From: Jean-Marc Lasgouttes Date: Wed, 13 Jun 2001 13:45:51 +0000 (+0000) Subject: aa class changes from Pit X-Git-Tag: 1.6.10~21187 X-Git-Url: https://git.lyx.org/gitweb/?a=commitdiff_plain;h=09316f34806f20cc8a24bdbba4cb635bb3c8b43d;p=features.git aa class changes from Pit git-svn-id: svn://svn.lyx.org/lyx/lyx-devel/trunk@2115 a592a061-630c-0410-9148-cb99ea01b6c8 --- diff --git a/lib/ChangeLog b/lib/ChangeLog index 0b840df4d2..20c156e02d 100644 --- a/lib/ChangeLog +++ b/lib/ChangeLog @@ -1,3 +1,17 @@ +2001-06-12 Peter Suetterlin + + * examples/aa_head.lyx: + * examples/aa_paper.lyx: removed + + * doc/LaTeXConfig.lyx.in: + * examples/aa_sample.lyx: + * layouts/aa.layout: + * layouts/aapaper.inc: + * layouts/aapaper.layout: + * templates/aa.lyx: aa.layout is for the new version of the + A&A document class, while aapaper.layout is for the older (and + slightly incompatible) version. + 2001-06-07 Jean-Marc Lasgouttes * doc/LaTeXConfig.lyx.in: @@ -24,12 +38,12 @@ 2001-05-22 Adrien Rebollo - * lib/kbd/european.kmap: - * lib/kbd/francais.kmap: - * lib/kbd/iso8859-15.cdef: + * kbd/european.kmap: + * kbd/francais.kmap: + * kbd/iso8859-15.cdef: * encodings: add iso8859-15 support. - * lib/kbd/iso8859-1.cdef: cleanup + * kbd/iso8859-1.cdef: cleanup 2001-05-22 Peter Suetterlin diff --git a/lib/doc/LaTeXConfig.lyx.in b/lib/doc/LaTeXConfig.lyx.in index 0485ffa879..870d0c58b2 100644 --- a/lib/doc/LaTeXConfig.lyx.in +++ b/lib/doc/LaTeXConfig.lyx.in @@ -360,16 +360,16 @@ Additional document classes aa \layout Description -Found: @chk_aapaper@ +Found: @chk_aa@ \layout Description -CTAN: N/A (available from Springer's ftp site +CTAN: N/A (available from ftp site \family typewriter - ftp.springer.de + ftp.edpsciences.org \family default in directory \family typewriter -/pub/tex/latex/aa +/pub/aa/ \family default ) \layout Description @@ -378,16 +378,13 @@ Notes: The document class \family sans aa \family default - can be used to write articles for submission to the scientific journal + (Version 5.01) can be used to write articles for submission to the + scientific journal \emph on Astronomy and Astrophysics \emph default - and the accompanying -\emph on -Supplement Series -\emph default -published by Springer -Verlag. +published by EDP Sciences. \layout Subsection aastex diff --git a/lib/examples/aa_head.lyx b/lib/examples/aa_head.lyx deleted file mode 100644 index fd4b0bb8d5..0000000000 --- a/lib/examples/aa_head.lyx +++ /dev/null @@ -1,153 +0,0 @@ -#This file was created by Tue Nov 25 23:06:48 1997 -#LyX 0.11 (C) 1995-1997 Matthias Ettrich and the LyX Team -\lyxformat 2.15 -\textclass aa -\language english -\inputencoding latin1 -\fontscheme times -\graphics default -\paperfontsize default -\spacing single -\papersize Default -\paperpackage a4 -\use_geometry 0 -\use_amsmath 0 -\paperorientation portrait -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\defskip medskip -\quotes_language english -\quotes_times 2 -\papercolumns 2 -\papersides 2 -\paperpagestyle default - -\layout Thesaurus - -Sorry, no thesaurus for that -\layout Title - -The Use of LyX in Astronomy -\layout Subtitle - -Looking towards a bright future -\layout Author - -P. - Sütterlin -\latex latex - -\backslash -inst{ -\latex default -1 -\latex latex -} -\begin_float footnote -\layout Standard - - -\series medium -\emph on -Present Address: -\emph default - Universitäts-Sternwarte, Geismarlandstr. - 11, D-37083 Göttingen -\end_float - -\latex latex - -\backslash -and -\latex default - A.N. - Coauthor -\latex latex - -\backslash -inst{ -\latex default -2 -\latex latex -} -\layout Address - -Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. - 6, D-79104 Freiburg -\latex latex - -\backslash -and -\latex default - Somewhere-in-the-Country -\layout Offprint - -P. - Sütterlin -\layout Email - -pit@uni-sw.gwdg.de -\layout Date - -Received: maybe / Accepted: who knows -\layout Abstract - -In this paper we show that LyX can be used to write papers for puplication - in the journal Astronomy and Astrophysics. - -\layout Abstract - - -\latex latex - -\backslash -keywords{ -\latex default -LaTeX - Wordprocessing - Publication -\latex latex -} -\layout Section - -Intoduction -\layout Standard - -In 1997, Springer Verlag decided to accept papers for publication in their - journals -\emph on -Astronomy and Astrophysics -\emph default - and the acompanying -\emph on -Supplement Series -\emph default - only in form of LaTeX. - At the same time, they switched the layout macros to LaTeX2 -\begin_inset Formula \( \epsilon \) -\end_inset - - (Lamport -\begin_inset LatexCommand \cite{kopka} - -\end_inset - -). - This made it easy to adapt a corresponding LyX style to produce the correct - output for direct submission to A&A. -\layout Section - -Discussion -\layout Standard - -What is there to discuss about? The existence of LyX with this layout makes - it as easy as one could wish to write scientific papers. -\layout Bibliography -\bibitem [1994]{lamport} - -L. - Lamport, 1994: -\emph on -LaTeX: A Document Preparation System -\emph default -, Addison-Wesley Publishing Company, 2nd edition -\the_end diff --git a/lib/examples/aa_paper.lyx b/lib/examples/aa_paper.lyx deleted file mode 100644 index fc9a688033..0000000000 --- a/lib/examples/aa_paper.lyx +++ /dev/null @@ -1,957 +0,0 @@ -#LyX 1.1 created this file. For more info see http://www.lyx.org/ -\lyxformat 218 -\textclass aa -\language english -\inputencoding latin1 -\fontscheme default -\graphics default -\paperfontsize default -\spacing single -\papersize Default -\paperpackage a4 -\use_geometry 0 -\use_amsmath 0 -\paperorientation portrait -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\defskip medskip -\quotes_language english -\quotes_times 2 -\papercolumns 2 -\papersides 2 -\paperpagestyle default - -\layout Thesaurus - -06(03.11.1;16.06.1;19.06.1;19.37.1;19.53.1;19.63.1) -\layout Title - -Hydrodynamics of giant planet formation -\layout Subtitle - -I. - Overviewing the -\begin_inset Formula \( \kappa \) -\end_inset - --mechanism -\layout Author - -G. - Wuchterl -\layout Address - -Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse - 17, A-1180 Vienna -\layout Offprint - -G. - Wuchterl -\layout Email - -wuchterl@amok.ast.univie.ac.at -\layout Date - -Received September 15, 1996 / Accepted March 16, 1997 -\layout Abstract - -To investigate the physical nature of the `nuc\SpecialChar \- -leated instability' of proto - giant planets (Mizuno -\begin_inset LatexCommand \cite{mizuno} - -\end_inset - -), the stability of layers in static, radiative gas spheres is analysed - on the basis of Baker's -\begin_inset LatexCommand \cite{baker} - -\end_inset - - standard one-zone model. - It is shown that stability depends only upon the equations of state, the - opacities and the local thermodynamic state in the layer. - Stability and instability can therefore be expressed in the form of stability - equations of state which are universal for a given composition. -\layout Abstract - -The stability equations of state are calculated for solar composition and - are displayed in the domain -\begin_inset Formula \( -14\leq \lg \rho /[\mathrm{g}\, \mathrm{cm}^{-3}]\leq 0 \) -\end_inset - -, -\begin_inset Formula \( 8.8\leq \lg e/[\mathrm{erg}\, \mathrm{g}^{-1}]\leq 17.7 \) -\end_inset - -. - These displays may be used to determine the one-zone stability of layers - in stellar or planetary structure models by directly reading off the value - of the stability equations for the thermodynamic state of these layers, - specified by state quantities as density -\begin_inset Formula \( \rho \) -\end_inset - -, temperature -\begin_inset Formula \( T \) -\end_inset - - or specific internal energy -\begin_inset Formula \( e \) -\end_inset - -. - Regions of instability in the -\begin_inset Formula \( (\rho \, e) \) -\end_inset - --plane are described and related to the underlying microphysical processes. - Vibrational instability is found to be a common phenomenon at temperatures - lower than the second He ionisation zone. - The -\begin_inset Formula \( \kappa \) -\end_inset - --mechanism is widespread under `cool' conditions. -\layout Abstract - - -\latex latex - -\backslash -keywords{ -\latex default -giant planet formation -- -\begin_inset Formula \( \kappa \) -\end_inset - --mechanism -- stability of gas spheres -\latex latex -} -\layout Section - -Introduction -\layout Standard - -In the -\emph on -nucleated instability -\emph default - (also called core instability) hypothesis of giant planet formation, a - critical mass for static core envelope protoplanets has been found. - Mizuno ( -\begin_inset LatexCommand \cite{mizuno} - -\end_inset - -) determined the critical mass of the core to be about -\begin_inset Formula \( 12\, M_{\oplus } \) -\end_inset - - ( -\begin_inset Formula \( M_{\oplus }=5.975\, 10^{27}\, \mathrm{g} \) -\end_inset - - is the Earth mass), which is independent of the outer boundary conditions - and therefore independent of the location in the solar nebula. - This critical value for the core mass corresponds closely to the cores - of today's giant planets. -\layout Standard - -Although no hydrodynamical study has been available many workers conjectured - that a collapse or rapid contraction will ensue after accumulating the - critical mass. - The main motivation for this article is to investigate the stability of - the static envelope at the critical mass. - With this aim the local, linear stability of static radiative gas spheres - is investigated on the basis of Baker's ( -\begin_inset LatexCommand \cite{baker} - -\end_inset - -) standard one-zone model. - The nonlinear, hydrodynamic evolution of the protogiant planet beyond the - critical mass, as calculated by Wuchterl ( -\begin_inset LatexCommand \cite{wuchterl} - -\end_inset - -), will be described in a forthcoming article. -\layout Standard - -The fact that Wuchterl ( -\begin_inset LatexCommand \cite{wuchterl} - -\end_inset - -) found the excitation of hydrodynamical waves in his models raises considerable - interest on the transition from static to dynamic evolutionary phases of - the protogiant planet at the critical mass. - The waves play a crucial role in the development of the so-called nucleated - instability in the nucleated instability hypothesis. - They lead to the formation of shock waves and massive outflow phenomena. - The protoplanet evolves into a new quasi-equilibrium structure with a -\emph on -pulsating -\emph default - envelope, after the mass loss phase has declined. -\layout Standard - -Phenomena similar to the ones described above for giant planet formation - have been found in hydrodynamical models concerning star formation where - protostellar cores explode (Tscharnuter -\begin_inset LatexCommand \cite{tscarnuter} - -\end_inset - -, Balluch -\begin_inset LatexCommand \cite{balluch} - -\end_inset - -), whereas earlier studies found quasi-steady collapse flows. - The similarities in the (micro)physics, i.e., constitutive relations of protostel -lar cores and protogiant planets serve as a further motivation for this - study. -\layout Section - -Baker's standard one-zone model -\layout Standard - -\begin_float wide-fig -\layout Standard - - -\latex latex - -\backslash -rule{0.4pt}{4cm} -\hfill - -\backslash -parbox[b]{55mm}{ -\layout Caption - -Adiabatic exponent -\begin_inset Formula \( \Gamma \) -\end_inset - -. - -\begin_inset Formula \( \Gamma _{1} \) -\end_inset - -is plotted as a function of -\begin_inset Formula \( \lg \) -\end_inset - - internal energy -\begin_inset Formula \( [\mathrm{erg}\, \mathrm{g}^{-1}] \) -\end_inset - - and -\begin_inset Formula \( \lg \) -\end_inset - - density -\begin_inset Formula \( [\mathrm{g}\, \mathrm{cm}^{-3}] \) -\end_inset - - -\begin_inset LatexCommand \label{FigGam} - -\end_inset - - -\latex latex -} -\end_float -In this section the one-zone model of Baker ( -\begin_inset LatexCommand \cite{baker} - -\end_inset - -), originally used to study the Cepheïd pulsation mechanism, will be briefly - reviewed. - The resulting stability criteria will be rewritten in terms of local state - variables, local timescales and constitutive relations. -\layout Standard - -Baker ( -\begin_inset LatexCommand \cite{baker} - -\end_inset - -) investigates the stability of thin layers in self-gravitating, spherical - gas clouds with the following properties: -\layout Itemize - -hydrostatic equilibrium, -\layout Itemize - -thermal equilibrium, -\layout Itemize - -energy transport by grey radiation diffusion. -\layout Standard - -For the one-zone-model Baker obtains necessary conditions for dynamical, - secular and vibrational (or pulsational) stability [Eqs.\SpecialChar ~ -(34a, -\latex latex - -\backslash -, -\latex default -b, -\latex latex - -\backslash -, -\latex default -c) in Baker -\begin_inset LatexCommand \cite{baker} - -\end_inset - -]. - Using Baker's notation: -\begin_inset Formula \begin{eqnarray*} -M_{\mathrm{r}} & & \mathrm{mass}\, \mathrm{internal}\, \mathrm{to}\, \mathrm{the}\, \mathrm{radius}\, r\\ -m & & \mathrm{mass}\, \mathrm{of}\, \mathrm{the}\, \mathrm{zone}\\ -r_{0} & & \mathrm{unperturbed}\, \mathrm{zone}\, \mathrm{radius}\\ -\rho _{0} & & \mathrm{unperturbed}\, \mathrm{density}\, \mathrm{in}\, \mathrm{the}\, \mathrm{zone}\\ -T_{0} & & \mathrm{unperturbed}\, \mathrm{temperature}\, \mathrm{in}\, \mathrm{the}\, \mathrm{zone}\\ -L_{r0} & & \mathrm{unperturbed}\, \mathrm{luminosity}\\ -E_{\mathrm{th}} & & \mathrm{thermal}\, \mathrm{energy}\, \mathrm{of}\, \mathrm{the}\, \mathrm{zone} -\end{eqnarray*} - -\end_inset - -and with the definitions of the -\emph on -local cooling time -\emph default - (see Fig.\SpecialChar ~ - -\begin_inset LatexCommand \ref{FigGam} - -\end_inset - -) -\layout Standard - - -\begin_inset Formula \begin{equation} -\tau _{\mathrm{co}}=\frac{E_{\mathrm{th}}}{L_{r0}}\, , -\end{equation} - -\end_inset - -and the -\emph on -local free-fall time -\layout Standard - - -\begin_inset Formula \begin{equation} -\tau _{\mathrm{ff}}=\sqrt{\frac{3\pi }{32G}\frac{4\pi r_{0}^{3}}{3M_{\mathrm{r}}}\, ,} -\end{equation} - -\end_inset - -Baker's -\begin_inset Formula \( K \) -\end_inset - - and -\begin_inset Formula \( \sigma _{0} \) -\end_inset - - have the following form: -\begin_inset Formula \begin{eqnarray} -\sigma _{0} & = & \frac{\pi }{\sqrt{8}}\frac{1}{\tau _{\mathrm{ff}}}\\ -K & = & \frac{\sqrt{32}}{\pi }\frac{1}{\delta }\frac{\tau _{\mathrm{ff}}}{\tau _{\mathrm{co}}}\, ; -\end{eqnarray} - -\end_inset - -where -\begin_inset Formula \( E_{\mathrm{th}}\approx m(P_{0}/\rho _{0}) \) -\end_inset - - has been used and -\layout Standard - - -\begin_inset Formula \begin{equation} -\begin{array}{l} -\delta =-\left( \frac{\partial \ln \rho }{\partial \ln T}\right) _{P}\\ -e=mc^{2} -\end{array} -\end{equation} - -\end_inset - -is a thermodynamical quantity which is of order -\begin_inset Formula \( 1 \) -\end_inset - - and equal to -\begin_inset Formula \( 1 \) -\end_inset - - for nonreacting mixtures of classical perfect gases. - The physical meaning of -\begin_inset Formula \( \sigma _{0} \) -\end_inset - - and -\begin_inset Formula \( K \) -\end_inset - - is clearly visible in the equations above. - -\begin_inset Formula \( \sigma _{0} \) -\end_inset - - represents a frequency of the order one per free-fall time. - -\begin_inset Formula \( K \) -\end_inset - - is proportional to the ratio of the free-fall time and the cooling time. - Substituting into Baker's criteria, using thermodynamic identities and - definitions of thermodynamic quantities, -\begin_inset Formula \[ -\Gamma _{1}=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{S}\, ,\: \chi _{\rho }=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{T}\, ,\: \kappa _{P}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\] - -\end_inset - - -\layout Standard - - -\begin_inset Formula \[ -\nabla _{\mathrm{ad}}=\left( \frac{\partial \ln T}{\partial \ln P}\right) _{S}\, ,\: \chi _{T}=\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\, ,\: \kappa _{T}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\] - -\end_inset - -one obtains, after some pages of algebra, the conditions for -\emph on -stability -\emph default - given below: -\layout Standard - - -\begin_inset Formula \begin{eqnarray} -\frac{\pi ^{2}}{8}\frac{1}{\tau _{\mathrm{ff}}^{2}}(3\Gamma _{1}-4) & > & 0\label{ZSDynSta} \\ -\frac{\pi ^{2}}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}\nabla _{\mathrm{ad}}\left[ \frac{1-3/4\chi _{\rho }}{\chi _{T}}(\kappa _{T}-4)+\kappa _{P}+1\right] & > & 0\label{ZSSecSta} \\ -\frac{\pi ^{2}}{4}\frac{3}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}^{2}\nabla _{\mathrm{ad}}\left[ 4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa _{T}+\kappa _{P})-\frac{4}{3\Gamma _{1}}\right] & > & 0\label{ZSVibSta} -\end{eqnarray} - -\end_inset - -For a physical discussion of the stability criteria see Baker ( -\begin_inset LatexCommand \cite{baker} - -\end_inset - -) or Cox ( -\begin_inset LatexCommand \cite{cox} - -\end_inset - -). -\layout Standard - -We observe that these criteria for dynamical, secular and vibrational stability, - respectively, can be factorized into -\layout Enumerate - -a factor containing local timescales only, -\layout Enumerate - -a factor containing only constitutive relations and their derivatives. -\layout Standard - -The first factors, depending on only timescales, are positive by definition. - The signs of the left hand sides of the inequalities\SpecialChar ~ -( -\begin_inset LatexCommand \ref{ZSDynSta} - -\end_inset - -), ( -\begin_inset LatexCommand \ref{ZSSecSta} - -\end_inset - -) and ( -\begin_inset LatexCommand \ref{ZSVibSta} - -\end_inset - -) therefore depend exclusively on the second factors containing the constitutive - relations. - Since they depend only on state variables, the stability criteria themselves - are -\emph on -functions of the thermodynamic state in the local zone -\emph default -. - The one-zone stability can therefore be determined from a simple equation - of state, given for example, as a function of density and temperature. - Once the microphysics, i.e. - the thermodynamics and opacities (see Table\SpecialChar ~ - -\begin_inset LatexCommand \ref{KapSou} - -\end_inset - -), are specified (in practice by specifying a chemical composition) the - one-zone stability can be inferred if the thermodynamic state is specified. - The zone -- or in other words the layer -- will be stable or unstable in - whatever object it is imbedded as long as it satisfies the one-zone-model - assumptions. - Only the specific growth rates (depending upon the time scales) will be - different for layers in different objects. -\layout Standard - -\begin_float tab -\layout Caption - -Opacity sources -\begin_inset LatexCommand \label{KapSou} - -\end_inset - - -\layout Standard - - -\begin_inset Tabular - - - - - - -\begin_inset Text - -\layout Standard - -Source -\end_inset - - -\begin_inset Text - -\layout Standard - -T/[K] -\end_inset - - - - -\begin_inset Text - -\layout Standard - -Yorke 1979, Yorke 1980a -\end_inset - - -\begin_inset Text - -\layout Standard - - -\begin_inset Formula \( \leq 1700^{\mathrm{a}} \) -\end_inset - - -\end_inset - - - - -\begin_inset Text - -\layout Standard - -Krügel 1971 -\end_inset - - -\begin_inset Text - -\layout Standard - - -\begin_inset Formula \( 1700\leq T\leq 5000 \) -\end_inset - - -\end_inset - - - - -\begin_inset Text - -\layout Standard - -Cox & Stewart 1969 -\end_inset - - -\begin_inset Text - -\layout Standard - - -\begin_inset Formula \( 5000\leq \) -\end_inset - - -\end_inset - - - - -\end_inset - - -\layout Standard -\added_space_top medskip* - -\begin_inset Formula \( ^{\textrm{a}} \) -\end_inset - - This is footnote a -\end_float -\begin_float wide-tab -\layout Caption - -Regions of secular instability -\begin_inset LatexCommand \label{TabSecInst} - -\end_inset - - -\layout Standard - - -\latex latex - -\backslash -vspace{4cm} -\end_float -We will now write down the sign (and therefore stability) determining parts - of the left-hand sides of the inequalities ( -\begin_inset LatexCommand \ref{ZSDynSta} - -\end_inset - -), ( -\begin_inset LatexCommand \ref{ZSSecSta} - -\end_inset - -) and ( -\begin_inset LatexCommand \ref{ZSVibSta} - -\end_inset - -) and thereby obtain -\emph on -stability equations of state -\emph default -. -\layout Standard - -The sign determining part of inequality\SpecialChar ~ -( -\begin_inset LatexCommand \ref{ZSDynSta} - -\end_inset - -) is -\begin_inset Formula \( 3\Gamma _{1}-4 \) -\end_inset - - and it reduces to the criterion for dynamical stability -\layout Standard - - -\begin_inset Formula \begin{equation} -\Gamma _{1}>\frac{4}{3} -\end{equation} - -\end_inset - -Stability of the thermodynamical equilibrium demands -\begin_inset Formula \begin{equation} -\chi _{\rho }>0,\: \: c_{v}>0\, , -\end{equation} - -\end_inset - -and -\layout Standard - - -\begin_inset Formula \begin{equation} -\chi _{T}>0 -\end{equation} - -\end_inset - -holds for a wide range of physical situations. - With -\layout Standard - - -\begin_inset Formula \begin{eqnarray} -\Gamma _{3}-1=\frac{P}{\rho T}\frac{\chi _{T}}{c_{v}} & > & 0\\ -\Gamma _{1}=\chi _{\rho }+\chi _{T}(\Gamma _{3}-1) & > & 0\\ -\nabla _{\mathrm{ad}}=\frac{\Gamma _{3}-1}{\Gamma _{1}} & > & 0 -\end{eqnarray} - -\end_inset - -we find the sign determining terms in inequalities\SpecialChar ~ -( -\begin_inset LatexCommand \ref{ZSSecSta} - -\end_inset - -) and ( -\begin_inset LatexCommand \ref{ZSVibSta} - -\end_inset - -) respectively and obtain the following form of the criteria for dynamical, - secular and vibrational -\emph on -stability -\emph default -, respectively: -\layout Standard - - -\begin_inset Formula \begin{eqnarray} -3\Gamma _{1}-4=:\, S_{\mathrm{dyn}}> & 0 & \label{DynSta} \\ -\frac{1-3/4\chi _{\rho }}{\chi _{T}}(\kappa _{T}-4)+\kappa _{P}+1=:\, S_{\mathrm{sec}}> & 0 & \label{SecSta} \\ -4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa _{T}+\kappa _{P}-\frac{4}{3\Gamma _{1}}=:\, S_{\mathrm{vib}}> & 0 & \label{VibSta} -\end{eqnarray} - -\end_inset - -The constitutive relations are to be evaluated for the unperturbed thermodynamic - state (say -\begin_inset Formula \( (\rho _{0},T_{0}) \) -\end_inset - -) of the zone. - We see that the one-zone stability of the layer depends only on the constitutiv -e relations -\begin_inset Formula \( \Gamma _{1} \) -\end_inset - -, -\begin_inset Formula \( \nabla _{\mathrm{ad}} \) -\end_inset - -, -\begin_inset Formula \( \chi _{T},\, \chi _{\rho } \) -\end_inset - -, -\begin_inset Formula \( \kappa _{P},\, \kappa _{T} \) -\end_inset - -. - These depend only on the unperturbed thermodynamical state of the layer. - Therefore the above relations define the one-zone-stability equations of - state -\begin_inset Formula \( S_{\mathrm{dyn}},\, S_{\mathrm{sec}} \) -\end_inset - - and -\begin_inset Formula \( S_{\mathrm{vib}} \) -\end_inset - -. - See Fig.\SpecialChar ~ - -\begin_inset LatexCommand \ref{FigVibStab} - -\end_inset - - for a picture of -\begin_inset Formula \( S_{\mathrm{vib}} \) -\end_inset - -. - Regions of secular instability are listed in Table\SpecialChar ~ - -\begin_inset LatexCommand \ref{TabSecInst} - -\end_inset - -. -\layout Standard - -\begin_float fig -\layout Standard - - -\latex latex - -\backslash -vspace{5cm} -\layout Caption - -Vibrational stability equation of state -\begin_inset Formula \( S_{\mathrm{vib}}(\lg e,\lg \rho ) \) -\end_inset - -. - -\begin_inset Formula \( >0 \) -\end_inset - - means vibrational stability. -\begin_inset LatexCommand \label{FigVibStab} - -\end_inset - - -\end_float -\layout Section - -Conclusions -\layout Enumerate - -The conditions for the stability of static, radiative layers in gas spheres, - as described by Baker's ( -\begin_inset LatexCommand \cite{baker} - -\end_inset - -) standard one-zone model, can be expressed as stability equations of state. - These stability equations of state depend only on the local thermodynamic - state of the layer. -\layout Enumerate - -If the constitutive relations -- equations of state and Rosseland mean opacities - -- are specified, the stability equations of state can be evaluated without - specifying properties of the layer. -\layout Enumerate - -For solar composition gas the -\begin_inset Formula \( \kappa \) -\end_inset - --mechanism is working in the regions of the ice and dust features in the - opacities, the -\begin_inset Formula \( \mathrm{H}_{2} \) -\end_inset - - dissociation and the combined H, first He ionization zone, as indicated - by vibrational instability. - These regions of instability are much larger in extent and degree of instabilit -y than the second He ionization zone that drives the Cepheïd pulsations. -\layout Acknowledgement - -Part of this work was supported by the German -\emph on -Deut\SpecialChar \- -sche For\SpecialChar \- -schungs\SpecialChar \- -ge\SpecialChar \- -mein\SpecialChar \- -schaft, DFG -\emph default - project number Ts\SpecialChar ~ -17/2--1. -\layout Bibliography -\bibitem [1966]{baker} - -Baker N., 1966, in: Stellar Evolution, eds.\SpecialChar ~ -R. - F. - Stein, A. - G. - W. - Cameron, Plenum, New York, p.\SpecialChar ~ -333 -\layout Bibliography -\bibitem [1988]{balluch} - -Balluch M., 1988, A&A 200, 58 -\layout Bibliography -\bibitem [1980]{cox} - -Cox J. - P., 1980, Theory of Stellar Pulsation, Princeton University Press, Princeton, - p.\SpecialChar ~ -165 -\layout Bibliography -\bibitem [1969]{cox69} - -Cox A. - N., Stewart J. - N., 1969, Academia Nauk, Scientific Information 15, 1 -\layout Bibliography -\bibitem [1971]{kruegel} - -Krügel E., 1971, Der Rosselandsche Mittelwert bei tiefen Temperaturen, Diplom--Th -esis, Univ.\SpecialChar ~ - Göttingen -\layout Bibliography -\bibitem [1980]{mizuno} - -Mizuno H., 1980, Prog. - Theor. - Phys. - 64, 544 -\layout Bibliography -\bibitem [1987]{tscarnuter} - -Tscharnuter W. - M., 1987, A&A 188, 55 -\layout Bibliography -\bibitem [1989]{wuchterl} - -Wuchterl G., 1989, Zur Entstehung der Gasplaneten. - Ku\SpecialChar \- -gel\SpecialChar \- -sym\SpecialChar \- -me\SpecialChar \- -tri\SpecialChar \- -sche Gas\SpecialChar \- -strö\SpecialChar \- -mun\SpecialChar \- -gen auf Pro\SpecialChar \- -to\SpecialChar \- -pla\SpecialChar \- -ne\SpecialChar \- -ten, Dissertation, Univ. - Wien -\layout Bibliography -\bibitem [1979]{yorke79} - -Yorke H. - W., 1979, A&A 80, 215 -\layout Bibliography -\bibitem [1980a]{yorke80a} - -Yorke H. - W., 1980a, A&A 86, 286 -\the_end diff --git a/lib/examples/aa_sample.lyx b/lib/examples/aa_sample.lyx new file mode 100644 index 0000000000..db4b6d389a --- /dev/null +++ b/lib/examples/aa_sample.lyx @@ -0,0 +1,963 @@ +#LyX 1.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 218 +\textclass aa +\begin_preamble +\usepackage{graphicx} +% +\end_preamble +\language english +\inputencoding auto +\fontscheme default +\graphics default +\paperfontsize default +\spacing single +\papersize Default +\paperpackage a4 +\use_geometry 0 +\use_amsmath 0 +\paperorientation portrait +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\defskip medskip +\quotes_language english +\quotes_times 2 +\papercolumns 2 +\papersides 2 +\paperpagestyle default + +\layout Title + +Hydrodynamics of giant planet formation +\layout Subtitle + +I. + Overviewing the +\begin_inset Formula \( \kappa \) +\end_inset + +-mechanism +\layout Author + +G. + Wuchterl +\latex latex + +\backslash +inst{1} +\backslash +and +\newline + +\latex default +C. + Ptolemy +\latex latex + +\backslash +inst{2} +\backslash +fnmsep +\begin_float footnote +\layout Standard + +Just to show the usage of the elements in the author field +\end_float + +\layout Offprint + +G. + Wuchterl +\layout Address + +Institute for Astronomy (IfA), University of Vienna, T\i \"{u} +rkenschanzstrasse + 17, A-1180 Vienna +\newline + +\latex latex + +\backslash +email{wuchterl@amok.ast.univie.ac.at} +\backslash +and +\newline + +\latex default +University of Alexandria, Department of Geography, ... +\newline + +\latex latex + +\backslash +email{c.ptolemy@hipparch.uheaven.space} +\latex default + +\begin_float footnote +\layout Standard + +The university of heaven temporarily does not accept e-mails +\end_float + +\layout Date + +Received September 15, 1996; accepted March 16, 1997 +\layout Abstract + +To investigate the physical nature of the `nuc\SpecialChar \- +leated instability' of proto + giant planets (Mizuno +\begin_inset LatexCommand \cite{mizuno} + +\end_inset + +), the stability of layers in static, radiative gas spheres is analysed + on the basis of Baker's +\begin_inset LatexCommand \cite{baker} + +\end_inset + + standard one-zone model. + It is shown that stability depends only upon the equations of state, the + opacities and the local thermodynamic state in the layer. + Stability and instability can therefore be expressed in the form of stability + equations of state which are universal for a given composition. + The stability equations of state are calculated for solar composition and + are displayed in the domain +\begin_inset Formula \( -14\leq \lg \rho /[\mathrm{g}\, \mathrm{cm}^{-3}]\leq 0 \) +\end_inset + +, +\begin_inset Formula \( 8.8\leq \lg e/[\mathrm{erg}\, \mathrm{g}^{-1}]\leq 17.7 \) +\end_inset + +. + These displays may be used to determine the one-zone stability of layers + in stellar or planetary structure models by directly reading off the value + of the stability equations for the thermodynamic state of these layers, + specified by state quantities as density +\begin_inset Formula \( \rho \) +\end_inset + +, temperature +\begin_inset Formula \( T \) +\end_inset + + or specific internal energy +\begin_inset Formula \( e \) +\end_inset + +. + Regions of instability in the +\begin_inset Formula \( (\rho ,e) \) +\end_inset + +-plane are described and related to the underlying microphysical processes. + Vibrational instability is found to be a common phenomenon at temperatures + lower than the second He ionisation zone. + The +\begin_inset Formula \( \kappa \) +\end_inset + +-mechanism is widespread under `cool' conditions. +\latex latex + +\newline + +\backslash +keywords{giant planet formation -- +\backslash +( +\backslash +kappa +\backslash +)-mechanism -- stability of gas spheres } +\latex default + +\layout Section + +Introduction +\layout Standard + +In the +\emph on +nucleated instability +\latex latex + +\backslash +/{} +\emph default +\latex default + (also called core instability) hypothesis of giant planet formation, a + critical mass for static core envelope protoplanets has been found. + Mizuno ( +\begin_inset LatexCommand \cite{mizuno} + +\end_inset + +) determined the critical mass of the core to be about +\begin_inset Formula \( 12\, M_{\oplus } \) +\end_inset + + ( +\begin_inset Formula \( M_{\oplus }=5.975\, 10^{27}\, \mathrm{g} \) +\end_inset + + is the Earth mass), which is independent of the outer boundary conditions + and therefore independent of the location in the solar nebula. + This critical value for the core mass corresponds closely to the cores + of today's giant planets. +\layout Standard + +Although no hydrodynamical study has been available many workers conjectured + that a collapse or rapid contraction will ensue after accumulating the + critical mass. + The main motivation for this article is to investigate the stability of + the static envelope at the critical mass. + With this aim the local, linear stability of static radiative gas spheres + is investigated on the basis of Baker's ( +\begin_inset LatexCommand \cite{baker} + +\end_inset + +) standard one-zone model. +\layout Standard + +Phenomena similar to the ones described above for giant planet formation + have been found in hydrodynamical models concerning star formation where + protostellar cores explode (Tscharnuter +\begin_inset LatexCommand \cite{tscharnuter} + +\end_inset + +, Balluch +\begin_inset LatexCommand \cite{balluch} + +\end_inset + +), whereas earlier studies found quasi-steady collapse flows. + The similarities in the (micro)physics, i.e., constitutive relations of protostel +lar cores and protogiant planets serve as a further motivation for this + study. +\layout Section + +Baker's standard one-zone model +\layout Standard + +\begin_float wide-fig +\layout Caption + +Adiabatic exponent +\begin_inset Formula \( \Gamma _{1} \) +\end_inset + +. + +\begin_inset Formula \( \Gamma _{1} \) +\end_inset + + is plotted as a function of +\begin_inset Formula \( \lg \) +\end_inset + + internal energy +\begin_inset Formula \( [\mathrm{erg}\, \mathrm{g}^{-1}] \) +\end_inset + + and +\begin_inset Formula \( \lg \) +\end_inset + + density +\begin_inset Formula \( [\mathrm{g}\, \mathrm{cm}^{-3}] \) +\end_inset + + +\layout Standard + + +\begin_inset LatexCommand \label{FigGam} + +\end_inset + + +\end_float + In this section the one-zone model of Baker ( +\begin_inset LatexCommand \cite{baker} + +\end_inset + +), originally used to study the Cephe\i \"{\i} +d pulsation mechanism, will be briefly + reviewed. + The resulting stability criteria will be rewritten in terms of local state + variables, local timescales and constitutive relations. +\layout Standard + +Baker ( +\begin_inset LatexCommand \cite{baker} + +\end_inset + +) investigates the stability of thin layers in self-gravitating, spherical + gas clouds with the following properties: +\layout Itemize + +hydrostatic equilibrium, +\layout Itemize + +thermal equilibrium, +\layout Itemize + +energy transport by grey radiation diffusion. + +\layout Standard +\noindent +For the one-zone-model Baker obtains necessary conditions for dynamical, + secular and vibrational (or pulsational) stability (Eqs. +\latex latex + +\backslash + +\latex default +(34a, +\latex latex + +\backslash +, +\latex default +b, +\latex latex + +\backslash +, +\latex default +c) in Baker +\begin_inset LatexCommand \cite{baker} + +\end_inset + +). + Using Baker's notation: +\layout Standard +\align left + +\begin_inset Formula \begin{eqnarray*} +M_{r} & & \textrm{mass internal to the radius }r\\ +m & & \textrm{mass of the zone}\\ +r_{0} & & \textrm{unperturbed zone radius}\\ +\rho _{0} & & \textrm{unperturbed density in the zone}\\ +T_{0} & & \textrm{unperturbed temperature in the zone}\\ +L_{r0} & & \textrm{unperturbed luminosity}\\ +E_{\textrm{th}} & & \textrm{thermal energy of the zone} +\end{eqnarray*} + +\end_inset + + +\layout Standard +\noindent +and with the definitions of the +\emph on +local cooling time +\latex latex + +\backslash +/{} +\emph default +\latex default + (see Fig.\SpecialChar ~ + +\begin_inset LatexCommand \ref{FigGam} + +\end_inset + +) +\begin_inset Formula \begin{equation} +\tau _{\mathrm{co}}=\frac{E_{\mathrm{th}}}{L_{r0}}\, , +\end{equation} + +\end_inset + + and the +\emph on +local free-fall time +\emph default + +\begin_inset Formula \begin{equation} +\tau _{\mathrm{ff}}=\sqrt{\frac{3\pi }{32G}\frac{4\pi r_{0}^{3}}{3M_{\mathrm{r}}}}\, , +\end{equation} + +\end_inset + + Baker's +\begin_inset Formula \( K \) +\end_inset + + and +\begin_inset Formula \( \sigma _{0} \) +\end_inset + + have the following form: +\begin_inset Formula \begin{eqnarray} +\sigma _{0} & = & \frac{\pi }{\sqrt{8}}\frac{1}{\tau _{\mathrm{ff}}}\\ +K & = & \frac{\sqrt{32}}{\pi }\frac{1}{\delta }\frac{\tau _{\mathrm{ff}}}{\tau _{\mathrm{co}}}\, ; +\end{eqnarray} + +\end_inset + + where +\begin_inset Formula \( E_{\mathrm{th}}\approx m(P_{0}/{\rho _{0}}) \) +\end_inset + + has been used and +\begin_inset Formula \begin{equation} +\begin{array}{l} +\delta =-\left( \frac{\partial \ln \rho }{\partial \ln T}\right) _{P}\\ +e=mc^{2} +\end{array} +\end{equation} + +\end_inset + + is a thermodynamical quantity which is of order +\begin_inset Formula \( 1 \) +\end_inset + + and equal to +\begin_inset Formula \( 1 \) +\end_inset + + for nonreacting mixtures of classical perfect gases. + The physical meaning of +\begin_inset Formula \( \sigma _{0} \) +\end_inset + + and +\begin_inset Formula \( K \) +\end_inset + + is clearly visible in the equations above. + +\begin_inset Formula \( \sigma _{0} \) +\end_inset + + represents a frequency of the order one per free-fall time. + +\begin_inset Formula \( K \) +\end_inset + + is proportional to the ratio of the free-fall time and the cooling time. + Substituting into Baker's criteria, using thermodynamic identities and + definitions of thermodynamic quantities, +\begin_inset Formula \[ +\Gamma _{1}=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{S}\, ,\; \chi ^{}_{\rho }=\left( \frac{\partial \ln P}{\partial \ln \rho }\right) _{T}\, ,\; \kappa ^{}_{P}=\left( \frac{\partial \ln \kappa }{\partial \ln P}\right) _{T}\] + +\end_inset + + +\begin_inset Formula \[ +\nabla _{\mathrm{ad}}=\left( \frac{\partial \ln T}{\partial \ln P}\right) _{S}\, ,\; \chi ^{}_{T}=\left( \frac{\partial \ln P}{\partial \ln T}\right) _{\rho }\, ,\; \kappa ^{}_{T}=\left( \frac{\partial \ln \kappa }{\partial \ln T}\right) _{T}\] + +\end_inset + + one obtains, after some pages of algebra, the conditions for +\emph on +stability +\latex latex + +\backslash +/{} +\emph default +\latex default + given below: +\begin_inset Formula \begin{eqnarray} +\frac{\pi ^{2}}{8}\frac{1}{\tau _{\mathrm{ff}}^{2}}(3\Gamma _{1}-4) & > & 0\label{ZSDynSta} \\ +\frac{\pi ^{2}}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}\nabla _{\mathrm{ad}}\left[ \frac{1-3/4\chi ^{}_{\rho }}{\chi ^{}_{T}}(\kappa ^{}_{T}-4)+\kappa ^{}_{P}+1\right] & > & 0\label{ZSSecSta} \\ +\frac{\pi ^{2}}{4}\frac{3}{\tau _{\mathrm{co}}\tau _{\mathrm{ff}}^{2}}\Gamma _{1}^{2}\, \nabla _{\mathrm{ad}}\left[ 4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa ^{}_{T}+\kappa ^{}_{P})-\frac{4}{3\Gamma _{1}}\right] & > & 0\label{ZSVibSta} +\end{eqnarray} + +\end_inset + + For a physical discussion of the stability criteria see Baker ( +\begin_inset LatexCommand \cite{baker} + +\end_inset + +) or Cox ( +\begin_inset LatexCommand \cite{cox} + +\end_inset + +). +\layout Standard + +We observe that these criteria for dynamical, secular and vibrational stability, + respectively, can be factorized into +\layout Enumerate + +a factor containing local timescales only, +\layout Enumerate + +a factor containing only constitutive relations and their derivatives. + +\layout Standard + +The first factors, depending on only timescales, are positive by definition. + The signs of the left hand sides of the inequalities\SpecialChar ~ +( +\begin_inset LatexCommand \ref{ZSDynSta} + +\end_inset + +), ( +\begin_inset LatexCommand \ref{ZSSecSta} + +\end_inset + +) and ( +\begin_inset LatexCommand \ref{ZSVibSta} + +\end_inset + +) therefore depend exclusively on the second factors containing the constitutive + relations. + Since they depend only on state variables, the stability criteria themselves + are +\emph on + functions of the thermodynamic state in the local zone +\emph default +. + The one-zone stability can therefore be determined from a simple equation + of state, given for example, as a function of density and temperature. + Once the microphysics, i.e. +\latex latex + +\backslash + +\latex default +the thermodynamics and opacities (see Table\SpecialChar ~ + +\begin_inset LatexCommand \ref{KapSou} + +\end_inset + +), are specified (in practice by specifying a chemical composition) the + one-zone stability can be inferred if the thermodynamic state is specified. + The zone -- or in other words the layer -- will be stable or unstable in + whatever object it is imbedded as long as it satisfies the one-zone-model + assumptions. + Only the specific growth rates (depending upon the time scales) will be + different for layers in different objects. +\layout Standard + +\begin_float tab +\layout Caption + + +\begin_inset LatexCommand \label{KapSou} + +\end_inset + +Opacity sources +\layout Standard + + +\begin_inset Tabular + + + + + + +\begin_inset Text + +\layout Standard + +Source +\end_inset + + +\begin_inset Text + +\layout Standard + + +\begin_inset Formula \( T/[\textrm{K}] \) +\end_inset + + +\end_inset + + + + +\begin_inset Text + +\layout Standard + +Yorke 1979, Yorke 1980a +\end_inset + + +\begin_inset Text + +\layout Standard + + +\begin_inset Formula \( \leq 1700^{\textrm{a}} \) +\end_inset + + +\end_inset + + + + +\begin_inset Text + +\layout Standard + +Krügel 1971 +\end_inset + + +\begin_inset Text + +\layout Standard + + +\begin_inset Formula \( 1700\leq T\leq 5000 \) +\end_inset + + +\end_inset + + + + +\begin_inset Text + +\layout Standard + +Cox & Stewart 1969 +\end_inset + + +\begin_inset Text + +\layout Standard + + +\begin_inset Formula \( 5000\leq \) +\end_inset + + +\end_inset + + + + +\end_inset + + +\layout Standard + + +\begin_inset Formula \( ^{\textrm{a}} \) +\end_inset + +This is footnote a +\end_float + We will now write down the sign (and therefore stability) determining parts + of the left-hand sides of the inequalities ( +\begin_inset LatexCommand \ref{ZSDynSta} + +\end_inset + +), ( +\begin_inset LatexCommand \ref{ZSSecSta} + +\end_inset + +) and ( +\begin_inset LatexCommand \ref{ZSVibSta} + +\end_inset + +) and thereby obtain +\emph on +stability equations of state +\emph default +. +\layout Standard + +The sign determining part of inequality\SpecialChar ~ +( +\begin_inset LatexCommand \ref{ZSDynSta} + +\end_inset + +) is +\begin_inset Formula \( 3\Gamma _{1}-4 \) +\end_inset + + and it reduces to the criterion for dynamical stability +\begin_inset Formula \begin{equation} +\Gamma _{1}>\frac{4}{3}\, \cdot +\end{equation} + +\end_inset + + Stability of the thermodynamical equilibrium demands +\begin_inset Formula \begin{equation} +\chi ^{}_{\rho }>0,\; \; c_{v}>0\, , +\end{equation} + +\end_inset + + and +\begin_inset Formula \begin{equation} +\chi ^{}_{T}>0 +\end{equation} + +\end_inset + + holds for a wide range of physical situations. + With +\begin_inset Formula \begin{eqnarray} +\Gamma _{3}-1=\frac{P}{\rho T}\frac{\chi ^{}_{T}}{c_{v}} & > & 0\\ +\Gamma _{1}=\chi _{\rho }^{}+\chi _{T}^{}(\Gamma _{3}-1) & > & 0\\ +\nabla _{\mathrm{ad}}=\frac{\Gamma _{3}-1}{\Gamma _{1}} & > & 0 +\end{eqnarray} + +\end_inset + + we find the sign determining terms in inequalities\SpecialChar ~ +( +\begin_inset LatexCommand \ref{ZSSecSta} + +\end_inset + +) and ( +\begin_inset LatexCommand \ref{ZSVibSta} + +\end_inset + +) respectively and obtain the following form of the criteria for dynamical, + secular and vibrational +\emph on +stability +\emph default +, respectively: +\begin_inset Formula \begin{eqnarray} +3\Gamma _{1}-4=:S_{\mathrm{dyn}}> & 0 & \label{DynSta} \\ +\frac{1-3/4\chi ^{}_{\rho }}{\chi ^{}_{T}}(\kappa ^{}_{T}-4)+\kappa ^{}_{P}+1=:S_{\mathrm{sec}}> & 0 & \label{SecSta} \\ +4\nabla _{\mathrm{ad}}-(\nabla _{\mathrm{ad}}\kappa ^{}_{T}+\kappa ^{}_{P})-\frac{4}{3\Gamma _{1}}=:S_{\mathrm{vib}}> & 0\, . & \label{VibSta} +\end{eqnarray} + +\end_inset + + The constitutive relations are to be evaluated for the unperturbed thermodynami +c state (say +\begin_inset Formula \( (\rho _{0},T_{0}) \) +\end_inset + +) of the zone. + We see that the one-zone stability of the layer depends only on the constitutiv +e relations +\begin_inset Formula \( \Gamma _{1} \) +\end_inset + +, +\begin_inset Formula \( \nabla _{\mathrm{ad}} \) +\end_inset + +, +\begin_inset Formula \( \chi _{T}^{},\, \chi _{\rho }^{} \) +\end_inset + +, +\begin_inset Formula \( \kappa _{P}^{},\, \kappa _{T}^{} \) +\end_inset + +. + These depend only on the unperturbed thermodynamical state of the layer. + Therefore the above relations define the one-zone-stability equations of + state +\begin_inset Formula \( S_{\mathrm{dyn}},\, S_{\mathrm{sec}} \) +\end_inset + + and +\begin_inset Formula \( S_{\mathrm{vib}} \) +\end_inset + +. + See Fig.\SpecialChar ~ + +\begin_inset LatexCommand \ref{FigVibStab} + +\end_inset + + for a picture of +\begin_inset Formula \( S_{\mathrm{vib}} \) +\end_inset + +. + Regions of secular instability are listed in Table\SpecialChar ~ +1. +\layout Standard + +\begin_float fig +\layout Caption + +Vibrational stability equation of state +\begin_inset Formula \( S_{\mathrm{vib}}(\lg e,\lg \rho ) \) +\end_inset + +. + +\begin_inset Formula \( >0 \) +\end_inset + + means vibrational stability +\layout Standard + + +\begin_inset LatexCommand \label{FigVibStab} + +\end_inset + + +\end_float +\layout Section + +Conclusions +\layout Enumerate + +The conditions for the stability of static, radiative layers in gas spheres, + as described by Baker's ( +\begin_inset LatexCommand \cite{baker} + +\end_inset + +) standard one-zone model, can be expressed as stability equations of state. + These stability equations of state depend only on the local thermodynamic + state of the layer. + +\layout Enumerate + +If the constitutive relations -- equations of state and Rosseland mean opacities + -- are specified, the stability equations of state can be evaluated without + specifying properties of the layer. + +\layout Enumerate + +For solar composition gas the +\begin_inset Formula \( \kappa \) +\end_inset + +-mechanism is working in the regions of the ice and dust features in the + opacities, the +\begin_inset Formula \( \mathrm{H}_{2} \) +\end_inset + + dissociation and the combined H, first He ionization zone, as indicated + by vibrational instability. + These regions of instability are much larger in extent and degree of instabilit +y than the second He ionization zone that drives the Cephe\i \"{\i} +d pulsations. + +\layout Acknowledgement + +Part of this work was supported by the German +\emph on +Deut\SpecialChar \- +sche For\SpecialChar \- +schungs\SpecialChar \- +ge\SpecialChar \- +mein\SpecialChar \- +schaft, DFG +\latex latex + +\backslash +/{} +\emph default +\latex default + project number Ts\SpecialChar ~ +17/2--1. + +\layout Bibliography +\bibitem [1966]{baker} + + Baker, N. + 1966, in Stellar Evolution, ed. +\latex latex + +\backslash + +\latex default +R. + F. + Stein,& A. + G. + W. + Cameron (Plenum, New York) 333 +\layout Bibliography +\bibitem [1988]{balluch} + + Balluch, M. + 1988, A&A, 200, 58 +\layout Bibliography +\bibitem [1980]{cox} + + Cox, J. + P. + 1980, Theory of Stellar Pulsation (Princeton University Press, Princeton) + 165 +\layout Bibliography +\bibitem [1969]{cox69} + + Cox, A. + N.,& Stewart, J. + N. + 1969, Academia Nauk, Scientific Information 15, 1 +\layout Bibliography +\bibitem [1980]{mizuno} + + Mizuno H. + 1980, Prog. + Theor. + Phys., 64, 544 +\layout Bibliography +\bibitem [1987]{tscharnuter} + + Tscharnuter W. + M. + 1987, A&A, 188, 55 +\layout Bibliography +\bibitem [1992]{terlevich} + + Terlevich, R. + 1992, in ASP Conf. + Ser. + 31, Relationships between Active Galactic Nuclei and Starburst Galaxies, + ed. + A. + V. + Filippenko, 13 +\layout Bibliography +\bibitem [1980a]{yorke80a} + + Yorke, H. + W. + 1980a, A&A, 86, 286 +\layout Bibliography +\bibitem [1997]{zheng} + +Zheng, W., Davidsen, A. + F., Tytler, D. + & Kriss, G. + A. + 1997, preprint +\the_end diff --git a/lib/layouts/aa.layout b/lib/layouts/aa.layout index 622cd34e17..1ed0532454 100644 --- a/lib/layouts/aa.layout +++ b/lib/layouts/aa.layout @@ -5,6 +5,10 @@ # # 2001-05-17 take out include of stdlayouts; merge aapaper.inc # remove LaTeX style, rename to aa +# 2001-05-31 Adapt to aa.cls version 5.01: +# take out thesaurus, email -> mail +# change layout of title +# abstract is command # General textclass parameters Columns 2 @@ -61,11 +65,9 @@ Style Author End Style Address End -Style Email - End Style Offprint End -Style Thesaurus +Style Mail End Style Date End @@ -106,87 +108,98 @@ Style Subtitle TopSep 1.3 BottomSep 1.3 ParSep 1 - Align Left - AlignPossible Left + Align Center LabelType No_Label # standard font definition Font - Size Normal + Family Sans + Size Larger Series Bold EndFont End # Address style definition Style Address + LeftMargin MMM Margin Static LatexType Command InTitle 1 LatexName institute ParSkip 0.4 - BottomSep 0.4 +# BottomSep 0.4 Align Left - AlignPossible Block, Left, Right, Center LabelType No_Label Font - Family Sans + Family Roman Size Small EndFont End -# Email address style definition -Style Email +# Address for Offprints style definition +Style Offprint Margin Static LatexType Command InTitle 1 - LatexName mail + LatexName offprints Align Left AlignPossible Left - LeftMargin email:M + LeftMargin "MNMOffprint Requests to:" LabelType Static - LabelString email: + LabelString "Offprint Requests to:" LabelSep M Font - Family Sans + Family Roman + Size Small + EndFont + LabelFont + Family Roman Size Small + Shape Slanted EndFont End -# Address for Offprints style definition -Style Offprint +# Mail address style definition +Style Mail Margin Static LatexType Command InTitle 1 - LatexName offprints + LatexName mail Align Left AlignPossible Left - LeftMargin "Offprint Requests to:MN" + LeftMargin "MJMCorrespondence to:" LabelType Static - LabelString "Offprint Requests to:" + LabelString "Correspondence to:" LabelSep M Font - Family Sans + Family Roman + Size Small + EndFont + LabelFont + Family Roman Size Small + Shape Slanted EndFont End + # Acnowledgement style definition Style Acknowledgement - Margin Static + Margin First_Dynamic LatexType Environment LatexName acknowledgements - NextNoIndent 1 + NextNoIndent 0 ItemSep 0 - TopSep 0.2 + TopSep 1.2 BottomSep 0 ParSep 0 Align Block AlignPossible Block - LabelType Top_Environment - LabelString Acknowledgements + LabelType Static + LabelString "Acknowledgements." LabelSep M # standard font definition Font @@ -200,23 +213,6 @@ Style Acknowledgement EndFont End -Style Thesaurus - LabelType Static - LatexType Command - InTitle 1 - LatexName thesaurus - NextNoIndent 1 - TopSep 0 - BottomSep 1 - LeftMargin Thesaurus:M - LabelSep M - LabelType Static - LabelString Thesaurus: - Font - Size Small - EndFont -End - # Caption style definition Style Caption Margin First_Dynamic @@ -231,7 +227,6 @@ Style Caption LabelType Sensitive LabelString Caption - # label font definition LabelFont Series Bold EndFont @@ -244,7 +239,8 @@ Style Section TopSep 2.0 BottomSep 1.3 Font - Size Normal + Family Sans + Size Large EndFont End @@ -253,9 +249,10 @@ Style Subsection TopSep 1.7 BottomSep 1.1 Font + Family Sans Series Medium - Size Normal - Shape Italic + Size Large + Shape Slanted EndFont End @@ -273,26 +270,29 @@ End Style Title TopSep 2 BottomSep 1.3 - Align Left + Align Center AlignPossible Left Font + Family Sans Series Bold EndFont End # Author style redefinition Style Author - Align Left - AlignPossible Left + Align Center + AlignPossible Center LabelType No_Label + BottomSep 1.5 Font - Size Normal - Series Bold + Size Large + Series Medium EndFont End # Date style redefinition Style Date + LeftMargin MMM LabelSep "" TopSep 1.2 Align Left @@ -304,18 +304,32 @@ End # Abstract style redefinition Style Abstract - LeftMargin "" - RightMargin "" + Margin First_Dynamic + LatexType Command + LatexName abstract + InTitle 1 + NextNoIndent 1 + LeftMargin MMM + RightMargin MMM ParIndent "" - TopSep 1.4 + ItemSep 0 + TopSep 1.2 BottomSep 0.7 - LabelType Top_Environment + ParSep 0 + Align Block + AlignPossible Block + LabelType static + LabelString " Abstract " + LabelSep M + LabelBottomSep 0 + Font - Size Normal + Size Small EndFont LabelFont + Family Sans Series Bold - Size Normal + Size Small EndFont End diff --git a/lib/layouts/aapaper.inc b/lib/layouts/aapaper.inc new file mode 100644 index 0000000000..eb29dd15b4 --- /dev/null +++ b/lib/layouts/aapaper.inc @@ -0,0 +1,134 @@ +# This file contains additional style definitions for the +# A&A paper style not found in the standard include files. +# It is Input by aapaper.layout +# +# Author: Peter Sütterlin + +# Subitle style definition +Style Subtitle + Margin Static + LatexType Command + InTitle 1 + LatexName subtitle + NextNoIndent 1 + ParSkip 0.4 + ItemSep 0 + TopSep 1.3 + BottomSep 1.3 + ParSep 1 + Align Left + AlignPossible Left + LabelType No_Label + + # standard font definition + Font + Size Normal + Series Bold + EndFont +End + +# Address style definition +Style Address + Margin Static + LatexType Command + InTitle 1 + LatexName institute + ParSkip 0.4 + BottomSep 0.4 + Align Left + AlignPossible Block, Left, Right, Center + LabelType No_Label + + Font + Family Sans + Size Small + EndFont +End + +# Email address style definition +Style Email + Margin Static + LatexType Command + InTitle 1 + LatexName mail + Align Left + AlignPossible Left + LeftMargin email:M + LabelType Static + LabelString email: + LabelSep M + + Font + Family Sans + Size Small + EndFont +End + +# Address for Offprints style definition +Style Offprint + Margin Static + LatexType Command + InTitle 1 + LatexName offprints + Align Left + AlignPossible Left + LeftMargin "Offprint Requests to:M" + LabelType Static + LabelString "Offprint Requests to:" + LabelSep M + + Font + Family Sans + Size Small + EndFont +End + +# Acnowledgement style definition +Style Acknowledgement + Margin Static + LatexType Environment + LatexName acknowledgements + NextNoIndent 1 + ItemSep 0 + TopSep 0.2 + BottomSep 0 + ParSep 0 + Align Block + AlignPossible Block + LabelType Top_Environment + LabelString Acknowledgements + LabelSep M + # standard font definition + Font + Size Small + EndFont + + # label font definition + LabelFont + Size Small + Shape Italic + EndFont +End + +Style Thesaurus + LabelType Static + LatexType Command + InTitle 1 + LatexName thesaurus + NextNoIndent 1 + TopSep 0 + BottomSep 1 + LeftMargin "Thesaurus not supported in recent A&A:M" + LabelSep M + LabelType Static + LabelString "Thesaurus not supported in recent A&A:" + Font + Size Small + EndFont + LabelFont + Color Red + EndFont +End + + + diff --git a/lib/layouts/aapaper.layout b/lib/layouts/aapaper.layout new file mode 100644 index 0000000000..8c0f94ffec --- /dev/null +++ b/lib/layouts/aapaper.layout @@ -0,0 +1,201 @@ +#% Do not delete the line below; configure depends on this +# \DeclareLaTeXClass[aa]{article (A&A V4)} +# +# Author: Peter Sütterlin + +# This is for the old Springer layout of A&A (aa.cls version 4.x) +# If you still have this, please upgrade to version 5 (see Extended.lyx) +# +# If you want to keep the layout for old papers I'd suggest to rename +# the old style file to aa-old and change the second line in this file to +# +# \DeclareLaTeXClass[aa-old]{article (A&A V4)} +# +# and reconfigure LyX (after running texhash, of course). + +# General textclass parameters +Columns 2 +Sides 2 +MaxCounter Counter_Section +SecNumDepth 3 +TocDepth 0 +PageStyle Plain + +DefaultFont + Family Roman + Series Medium + Shape Up + Size Normal + Color None +EndFont + +# Standard style definition +Style Standard + Margin Static + LatexType Paragraph + LatexName dummy + ParIndent MM + ParSkip 0.4 + Align Block + AlignPossible Block, Left, Right, Center + LabelType No_Label +End + +# I want to keep the entries in a logical order. +# Therefore I'll define the entries first, then fill them + +Style Itemize + End +Style Enumerate + End +Style Description + End +Style List + End +Style Caption + End +Style LaTeX + End +Style Section + End +Style Subsection + End +Style Subsubsection + End +Style Title + End +Style Subtitle + End +Style Author + End +Style Address + End +Style Email + End +Style Offprint + End +Style Thesaurus + End +Style Date + End +Style Abstract + End +Style Acknowledgement + End +Style Bibliography + End + +# OK, now we have a more or less consistent Ordering. Now fill the +# definitions. +# First, the standard includes + +Input stdlists.inc +Input stdlayouts.inc +Input stdsections.inc +Input stdtitle.inc +Input stdstruct.inc + +# Remove unwanted Styles + +NoStyle Quotation +NoStyle Quote +NoStyle Verse +NoStyle Chapter +NoStyle Paragraph +NoStyle Subparagraph +NoStyle Part + +# Definitions only valid for A&A style +Input aapaper.inc + +# Redefine some things + +# Section style redefinition +Style Section + TopSep 2.0 + BottomSep 1.3 + Font + Size Normal + EndFont +End + +# Subsection style redefinition +Style Subsection + TopSep 1.7 + BottomSep 1.1 + Font + Series Medium + Size Normal + Shape Italic + EndFont +End + +# Subsubsection style redefinition +Style Subsubsection + TopSep 1.7 + BottomSep 1.1 + Font + Series Medium + Size Normal + EndFont +End + +# Title style redefinition +Style Title + TopSep 2 + BottomSep 1.3 + Align Left + AlignPossible Left + Font + Series Bold + EndFont +End + +# Author style redefinition +Style Author + Align Left + AlignPossible Left + LabelType No_Label + Font + Size Normal + Series Bold + EndFont +End + +# Date style redefinition +Style Date + LabelSep "" + TopSep 1.2 + Align Left + AlignPossible Left + Font + Size Small + EndFont +End + +# Abstract style redefinition +Style Abstract + LeftMargin "" + RightMargin "" + ParIndent "" + TopSep 1.4 + BottomSep 0.7 + LabelType Top_Environment + Font + Size Normal + EndFont + LabelFont + Series Bold + Size Normal + EndFont +End + +# Bibliography style redefinition +Style Bibliography + Align Left + AlignPossible Left + LabelFont + Series Bold + EndFont +End + diff --git a/lib/templates/aa.lyx b/lib/templates/aa.lyx index 1645897db3..e68e4c0f08 100644 --- a/lib/templates/aa.lyx +++ b/lib/templates/aa.lyx @@ -1,12 +1,13 @@ -#This file was created by Mon Nov 24 23:26:21 1997 -#LyX 0.11 (C) 1995-1997 Matthias Ettrich and the LyX Team -\lyxformat 2.15 +#LyX 1.1 created this file. For more info see http://www.lyx.org/ +\lyxformat 218 \textclass aa \language english +\inputencoding auto \fontscheme times \graphics default \paperfontsize default \spacing single +\papersize Default \paperpackage a4 \use_geometry 0 \use_amsmath 0 @@ -15,13 +16,12 @@ \tocdepth 3 \paragraph_separation indent \defskip medskip +\quotes_language english +\quotes_times 2 \papercolumns 2 \papersides 2 \paperpagestyle default -\layout Thesaurus - -Put the Thesaurus codes here \layout Title This is your Title @@ -54,29 +54,45 @@ inst{ \layout Address Here +\newline + +\latex latex + +\backslash +email{ +\latex default +myaddress \latex latex +} +\newline \backslash and \latex default There -\layout Offprint +\newline -Me -\layout Email +\latex latex + +\backslash +email{ +\latex default +youraddress +\latex latex +} +\layout Offprint Me \layout Date -Received / Accepted +Received ; Accepted \layout Abstract Short abstract -\layout Abstract - - \latex latex +\newline + \backslash keywords{ \latex default