#ifdef __GNUG__ #pragma implementation #endif #include "math_gridinset.h" #include "math_mathmlstream.h" #include "math_streamstr.h" #include "lyxfont.h" #include "Painter.h" #include "debug.h" using std::swap; using std::max; using std::min; using std::vector; namespace { string verboseHLine(int n) { string res; for (int i = 0; i < n; ++i) res += "\\hline"; return res + ' '; } } ////////////////////////////////////////////////////////////// MathGridInset::RowInfo::RowInfo() : lines_(0), skip_(0) {} int MathGridInset::RowInfo::skipPixels() const { #ifdef WITH_WARNINGS #warning fix this once the interface to LyXLength has improved #endif return int(crskip_.value()); } ////////////////////////////////////////////////////////////// MathGridInset::ColInfo::ColInfo() : align_('c'), leftline_(false), rightline_(false), lines_(0) {} ////////////////////////////////////////////////////////////// MathGridInset::MathGridInset(char v, string const & h) : MathNestInset(guessColumns(h)), rowinfo_(2), colinfo_(guessColumns(h) + 1) { setDefaults(); valign(v); halign(h); } MathGridInset::MathGridInset(col_type m, row_type n) : MathNestInset(m * n), rowinfo_(n + 1), colinfo_(m + 1), v_align_('c') { setDefaults(); } MathGridInset::MathGridInset(col_type m, row_type n, char v, string const & h) : MathNestInset(m * n), rowinfo_(n + 1), colinfo_(m + 1), v_align_(v) { setDefaults(); valign(v); halign(h); } MathInset * MathGridInset::clone() const { return new MathGridInset(*this); } MathInset::idx_type MathGridInset::index(row_type row, col_type col) const { return col + ncols() * row; } void MathGridInset::setDefaults() { if (ncols() <= 0) lyxerr << "positive number of columns expected\n"; if (nrows() <= 0) lyxerr << "positive number of rows expected\n"; for (col_type col = 0; col < ncols(); ++col) { colinfo_[col].align_ = defaultColAlign(col); colinfo_[col].skip_ = defaultColSpace(col); } } void MathGridInset::halign(string const & hh) { col_type col = 0; for (string::const_iterator it = hh.begin(); it != hh.end(); ++it) { char c = *it; if (c == '|') { colinfo_[col].lines_++; } else if (c == 'c' || c == 'l' || c == 'r') { colinfo_[col].align_ = c; ++col; colinfo_[col].lines_ = 0; } else { lyxerr << "unkown column separator: '" << c << "'\n"; } } /* col_type n = hh.size(); if (n > ncols()) n = ncols(); for (col_type col = 0; col < n; ++col) colinfo_[col].align_ = hh[col]; */ } MathGridInset::col_type MathGridInset::guessColumns(string const & hh) const { col_type col = 0; for (string::const_iterator it = hh.begin(); it != hh.end(); ++it) if (*it == 'c' || *it == 'l' || *it == 'r') ++col; return col; } void MathGridInset::halign(char h, col_type col) { colinfo_[col].align_ = h; } char MathGridInset::halign(col_type col) const { return colinfo_[col].align_; } string MathGridInset::halign() const { string res; for (col_type col = 0; col < ncols(); ++col) { res += string(colinfo_[col].lines_, '|'); res += colinfo_[col].align_; } return res + string(colinfo_[ncols()].lines_, '|'); } void MathGridInset::valign(char c) { v_align_ = c; } char MathGridInset::valign() const { return v_align_; } MathGridInset::col_type MathGridInset::ncols() const { return colinfo_.size() - 1; } MathGridInset::row_type MathGridInset::nrows() const { return rowinfo_.size() - 1; } MathGridInset::col_type MathGridInset::col(idx_type idx) const { return idx % ncols(); } MathGridInset::row_type MathGridInset::row(idx_type idx) const { return idx / ncols(); } void MathGridInset::vcrskip(LyXLength const & crskip, row_type row) { rowinfo_[row].crskip_ = crskip; } LyXLength MathGridInset::vcrskip(row_type row) const { return rowinfo_[row].crskip_; } void MathGridInset::metrics(MathMetricsInfo const & mi) const { // let the cells adjust themselves MathNestInset::metrics(mi); // compute absolute sizes of vertical structure for (row_type row = 0; row < nrows(); ++row) { int asc = 0; int desc = 0; for (col_type col = 0; col < ncols(); ++col) { MathXArray const & c = xcell(index(row, col)); asc = max(asc, c.ascent()); desc = max(desc, c.descent()); } rowinfo_[row].ascent_ = asc; rowinfo_[row].descent_ = desc; } rowinfo_[0].ascent_ += hlinesep() * rowinfo_[0].lines_; rowinfo_[nrows()].ascent_ = 0; rowinfo_[nrows()].descent_ = 0; // compute vertical offsets rowinfo_[0].offset_ = 0; for (row_type row = 1; row <= nrows(); ++row) { rowinfo_[row].offset_ = rowinfo_[row - 1].offset_ + rowinfo_[row - 1].descent_ + rowinfo_[row - 1].skipPixels() + rowsep() + rowinfo_[row].lines_ * hlinesep() + rowinfo_[row].ascent_; } // adjust vertical offset int h = 0; switch (v_align_) { case 't': h = 0; break; case 'b': h = rowinfo_[nrows() - 1].offset_; break; default: h = rowinfo_[nrows() - 1].offset_ / 2; } for (row_type row = 0; row <= nrows(); ++row) rowinfo_[row].offset_ -= h; // compute absolute sizes of horizontal structure for (col_type col = 0; col < ncols(); ++col) { int wid = 0; for (row_type row = 0; row < nrows(); ++row) wid = max(wid, xcell(index(row, col)).width()); colinfo_[col].width_ = wid; } colinfo_[ncols()].width_ = 0; // compute horizontal offsets colinfo_[0].offset_ = border(); for (col_type col = 1; col <= ncols(); ++col) { colinfo_[col].offset_ = colinfo_[col - 1].offset_ + colinfo_[col - 1].width_ + colinfo_[col - 1].skip_ + colsep() + colinfo_[col].lines_ * vlinesep(); } width_ = colinfo_[ncols() - 1].offset_ + colinfo_[ncols() - 1].width_ + vlinesep() * colinfo_[ncols()].lines_ + border(); ascent_ = - rowinfo_[0].offset_ + rowinfo_[0].ascent_ + hlinesep() * rowinfo_[0].lines_ + border(); descent_ = rowinfo_[nrows() - 1].offset_ + rowinfo_[nrows() - 1].descent_ + hlinesep() * rowinfo_[nrows()].lines_ + border(); /* // Increase ws_[i] for 'R' columns (except the first one) for (int i = 1; i < nc_; ++i) if (align_[i] == 'R') ws_[i] += 10 * df_width; // Increase ws_[i] for 'C' column if (align_[0] == 'C') if (ws_[0] < 7 * workwidth / 8) ws_[0] = 7 * workwidth / 8; // Adjust local tabs width = colsep(); for (cxrow = row_.begin(); cxrow; ++cxrow) { int rg = COLSEP; int lf = 0; for (int i = 0; i < nc_; ++i) { bool isvoid = false; if (cxrow->getTab(i) <= 0) { cxrow->setTab(i, df_width); isvoid = true; } switch (align_[i]) { case 'l': lf = 0; break; case 'c': lf = (ws_[i] - cxrow->getTab(i))/2; break; case 'r': case 'R': lf = ws_[i] - cxrow->getTab(i); break; case 'C': if (cxrow == row_.begin()) lf = 0; else if (cxrow.is_last()) lf = ws_[i] - cxrow->getTab(i); else lf = (ws_[i] - cxrow->getTab(i))/2; break; } int const ww = (isvoid) ? lf : lf + cxrow->getTab(i); cxrow->setTab(i, lf + rg); rg = ws_[i] - ww + colsep(); if (cxrow == row_.begin()) width += ws_[i] + colsep(); } cxrow->setBaseline(cxrow->getBaseline() - ascent); } */ } void MathGridInset::draw(Painter & pain, int x, int y) const { for (idx_type idx = 0; idx < nargs(); ++idx) xcell(idx).draw(pain, x + cellXOffset(idx), y + cellYOffset(idx)); for (row_type row = 0; row <= nrows(); ++row) for (int i = 0; i < rowinfo_[row].lines_; ++i) { int yy = y + rowinfo_[row].offset_ - rowinfo_[row].ascent_ - i * hlinesep() - hlinesep()/2 - rowsep()/2; pain.line(x + 1, yy, x + width_ - 1, yy); } for (col_type col = 0; col <= ncols(); ++col) for (int i = 0; i < colinfo_[col].lines_; ++i) { int xx = x + colinfo_[col].offset_ - i * vlinesep() - vlinesep()/2 - colsep()/2; pain.line(xx, y - ascent_ + 1, xx, y + descent_ - 1); } } void MathGridInset::metricsT(TextMetricsInfo const & mi) const { // let the cells adjust themselves //MathNestInset::metrics(mi); for (idx_type i = 0; i < nargs(); ++i) xcell(i).metricsT(mi); // compute absolute sizes of vertical structure for (row_type row = 0; row < nrows(); ++row) { int asc = 0; int desc = 0; for (col_type col = 0; col < ncols(); ++col) { MathXArray const & c = xcell(index(row, col)); asc = max(asc, c.ascent()); desc = max(desc, c.descent()); } rowinfo_[row].ascent_ = asc; rowinfo_[row].descent_ = desc; } //rowinfo_[0].ascent_ += hlinesep() * rowinfo_[0].lines_; rowinfo_[nrows()].ascent_ = 0; rowinfo_[nrows()].descent_ = 0; // compute vertical offsets rowinfo_[0].offset_ = 0; for (row_type row = 1; row <= nrows(); ++row) { rowinfo_[row].offset_ = rowinfo_[row - 1].offset_ + rowinfo_[row - 1].descent_ + //rowinfo_[row - 1].skipPixels() + 1 + //rowsep() + //rowinfo_[row].lines_ * hlinesep() + rowinfo_[row].ascent_; } // adjust vertical offset int h = 0; switch (v_align_) { case 't': h = 0; break; case 'b': h = rowinfo_[nrows() - 1].offset_; break; default: h = rowinfo_[nrows() - 1].offset_ / 2; } for (row_type row = 0; row <= nrows(); ++row) rowinfo_[row].offset_ -= h; // compute absolute sizes of horizontal structure for (col_type col = 0; col < ncols(); ++col) { int wid = 0; for (row_type row = 0; row < nrows(); ++row) wid = max(wid, xcell(index(row, col)).width()); colinfo_[col].width_ = wid; } colinfo_[ncols()].width_ = 0; // compute horizontal offsets colinfo_[0].offset_ = border(); for (col_type col = 1; col <= ncols(); ++col) { colinfo_[col].offset_ = colinfo_[col - 1].offset_ + colinfo_[col - 1].width_ + colinfo_[col - 1].skip_ + 1 ; //colsep() + //colinfo_[col].lines_ * vlinesep(); } width_ = colinfo_[ncols() - 1].offset_ + colinfo_[ncols() - 1].width_ //+ vlinesep() * colinfo_[ncols()].lines_ + 2; ascent_ = - rowinfo_[0].offset_ + rowinfo_[0].ascent_ //+ hlinesep() * rowinfo_[0].lines_ + 1; descent_ = rowinfo_[nrows() - 1].offset_ + rowinfo_[nrows() - 1].descent_ //+ hlinesep() * rowinfo_[nrows()].lines_ + 1; } void MathGridInset::drawT(TextPainter & pain, int x, int y) const { for (idx_type idx = 0; idx < nargs(); ++idx) xcell(idx).drawT(pain, x + cellXOffset(idx), y + cellYOffset(idx)); } string MathGridInset::eolString(row_type row) const { string eol; if (!rowinfo_[row].crskip_.zero()) eol += "[" + rowinfo_[row].crskip_.asLatexString() + "]"; // make sure an upcoming '[' does not break anything if (row + 1 < nrows()) { MathArray const & c = cell(index(row + 1, 0)); if (c.size() && c.front()->getChar() == '[') //eol += "[0pt]"; eol += "{}"; } // only add \\ if necessary if (eol.empty() && row + 1 == nrows()) return string(); return "\\\\" + eol + '\n'; } string MathGridInset::eocString(col_type col) const { if (col + 1 == ncols()) return string(); return " & "; } void MathGridInset::addRow(row_type row) { rowinfo_.insert(rowinfo_.begin() + row + 1, RowInfo()); cells_.insert(cells_.begin() + (row + 1) * ncols(), ncols(), MathXArray()); } void MathGridInset::appendRow() { rowinfo_.push_back(RowInfo()); //cells_.insert(cells_.end(), ncols(), MathXArray()); for (col_type col = 0; col < ncols(); ++col) cells_.push_back(cells_type::value_type()); } void MathGridInset::delRow(row_type row) { if (nrows() == 1) return; cells_type::iterator it = cells_.begin() + row * ncols(); cells_.erase(it, it + ncols()); rowinfo_.erase(rowinfo_.begin() + row); } void MathGridInset::addCol(col_type newcol) { const col_type nc = ncols(); const row_type nr = nrows(); cells_type new_cells((nc + 1) * nr); for (row_type row = 0; row < nr; ++row) for (col_type col = 0; col < nc; ++col) new_cells[row * (nc + 1) + col + (col > newcol)] = cells_[row * nc + col]; swap(cells_, new_cells); ColInfo inf; inf.skip_ = defaultColSpace(newcol); inf.align_ = defaultColAlign(newcol); colinfo_.insert(colinfo_.begin() + newcol, inf); } void MathGridInset::delCol(col_type col) { if (ncols() == 1) return; cells_type tmpcells; for (col_type i = 0; i < nargs(); ++i) if (i % ncols() != col) tmpcells.push_back(cells_[i]); swap(cells_, tmpcells); colinfo_.erase(colinfo_.begin() + col); } int MathGridInset::cellXOffset(idx_type idx) const { col_type c = col(idx); int x = colinfo_[c].offset_; char align = colinfo_[c].align_; if (align == 'r' || align == 'R') x += colinfo_[c].width_ - xcell(idx).width(); if (align == 'c' || align == 'C') x += (colinfo_[c].width_ - xcell(idx).width()) / 2; return x; } int MathGridInset::cellYOffset(idx_type idx) const { return rowinfo_[row(idx)].offset_; } bool MathGridInset::idxUpDown(idx_type & idx, bool up) const { if (up) { if (idx < ncols()) return false; idx -= ncols(); return true; } else { if (idx >= ncols() * (nrows() - 1)) return false; idx += ncols(); return true; } } bool MathGridInset::idxLeft(idx_type & idx, pos_type & pos) const { // leave matrix if on the left hand edge if (col(idx) == 0) return false; --idx; pos = cell(idx).size(); return true; } bool MathGridInset::idxRight(idx_type & idx, pos_type & pos) const { // leave matrix if on the right hand edge if (col(idx) + 1 == ncols()) return false; ++idx; pos = 0; return true; } bool MathGridInset::idxFirst(idx_type & idx, pos_type & pos) const { switch (v_align_) { case 't': idx = 0; break; case 'b': idx = (nrows() - 1) * ncols(); break; default: idx = ((nrows() - 1) / 2) * ncols(); } pos = 0; return true; } bool MathGridInset::idxLast(idx_type & idx, pos_type & pos) const { switch (v_align_) { case 't': idx = ncols() - 1; break; case 'b': idx = nargs() - 1; break; default: idx = ((nrows() - 1) / 2 + 1) * ncols() - 1; } pos = cell(idx).size(); return true; } bool MathGridInset::idxHome(idx_type & idx, pos_type & pos) const { if (pos > 0) { pos = 0; return true; } if (col(idx) > 0) { idx -= idx % ncols(); pos = 0; return true; } if (idx > 0) { idx = 0; pos = 0; return true; } return false; } bool MathGridInset::idxEnd(idx_type & idx, pos_type & pos) const { if (pos < cell(idx).size()) { pos = cell(idx).size(); return true; } if (col(idx) < ncols() - 1) { idx = idx - idx % ncols() + ncols() - 1; pos = cell(idx).size(); return true; } if (idx < nargs() - 1) { idx = nargs() - 1; pos = cell(idx).size(); return true; } return false; } bool MathGridInset::idxDelete(idx_type & idx) { // nothing to do if we are in the middle of the last row of the inset if (idx + ncols() > nargs()) return false; // try to delete entire sequence of ncols() empty cells if possible for (idx_type i = idx; i < idx + ncols(); ++i) if (cell(i).size()) return false; // move cells if necessary for (idx_type i = index(row(idx), 0); i < idx; ++i) cell(i).swap(cell(i + ncols())); delRow(row(idx)); if (idx >= nargs()) idx = nargs() - 1; // undo effect of Ctrl-Tab (i.e. pull next cell) //if (idx + 1 != nargs()) // cell(idx).swap(cell(idx + 1)); // we handled the event.. return true; } // reimplement old behaviour when pressing Delete in the last position // of a cell void MathGridInset::idxGlue(idx_type idx) { col_type c = col(idx); if (c + 1 == ncols()) { if (row(idx) + 1 != nrows()) { for (col_type cc = 0; cc < ncols(); ++cc) cell(idx).push_back(cell(idx + cc + 1)); delRow(row(idx) + 1); } } else { cell(idx).push_back(cell(idx + 1)); for (col_type cc = c + 2; cc < ncols(); ++cc) cell(idx - c + cc - 1) = cell(idx - c + cc); cell(idx - c + ncols() - 1).erase(); } } MathGridInset::RowInfo const & MathGridInset::rowinfo(row_type row) const { return rowinfo_[row]; } MathGridInset::RowInfo & MathGridInset::rowinfo(row_type row) { return rowinfo_[row]; } vector MathGridInset::idxBetween(idx_type from, idx_type to) const { row_type r1 = min(row(from), row(to)); row_type r2 = max(row(from), row(to)); col_type c1 = min(col(from), col(to)); col_type c2 = max(col(from), col(to)); vector res; for (row_type i = r1; i <= r2; ++i) for (col_type j = c1; j <= c2; ++j) res.push_back(index(i, j)); return res; } void MathGridInset::normalize(NormalStream & os) const { os << "[grid "; for (row_type row = 0; row < nrows(); ++row) { os << "[row "; for (col_type col = 0; col < ncols(); ++col) os << "[cell " << cell(index(row, col)) << ']'; os << ']'; } os << ']'; } void MathGridInset::mathmlize(MathMLStream & os) const { os << MTag("mtable"); for (row_type row = 0; row < nrows(); ++row) { os << MTag("mtr"); for (col_type col = 0; col < ncols(); ++col) os << cell(index(row, col)); os << ETag("mtr"); } os << ETag("mtable"); } void MathGridInset::write(WriteStream & os) const { for (row_type row = 0; row < nrows(); ++row) { os << verboseHLine(rowinfo_[row].lines_); for (col_type col = 0; col < ncols(); ++col) os << cell(index(row, col)) << eocString(col); os << eolString(row); } string const s = verboseHLine(rowinfo_[nrows()].lines_); if (!s.empty() && s != " ") os << "\\\\" << s; } int MathGridInset::colsep() const { return 6; } int MathGridInset::rowsep() const { return 6; } int MathGridInset::hlinesep() const { return 3; } int MathGridInset::vlinesep() const { return 3; } int MathGridInset::border() const { return 2; }