
Customizing LYX: Features for the
Advanced User

by the LYX Team∗

Version 2.0.x

July 15, 2011

∗If you have comments or error corrections, please send them to the LYX Documentation
mailing list, lyx-docs@lists.lyx.org. Include “[Customization]” in the subject header,
and please cc the current maintainer of this file, Richard Heck <rgheck@comcast.net>.

mailto:lyx-docs@lists.lyx.org

Contents

1 Introduction 1

2 LYX configuration files 3
2.1 What’s in LYXDir? . 3

2.1.1 Automatically generated files 3
2.1.2 Directories . 4
2.1.3 Files you don’t want to modify 4
2.1.4 Other files needing a line or two... 5

2.2 Your local configuration directory . 5
2.3 Running LYX with multiple configurations 5

3 The Preferences dialog 7
3.1 Formats . 7
3.2 Copiers . 7
3.3 Converters . 8

4 Internationalizing LYX 11
4.1 Translating LYX . 11

4.1.1 Translating the graphical user interface (text messages). . . . 11
4.1.1.1 Ambiguous messages 12

4.1.2 Translating the documentation. 12
4.2 International Keymap Stuff . 13

4.2.1 The .kmap File . 14
4.2.2 The .cdef File . 15
4.2.3 Dead Keys . 16
4.2.4 Saving your Language Configuration 16

5 Installing New Document Classes 17
5.1 Installing new LATEX files . 18
5.2 Types of layout files . 19

5.2.1 Layout modules . 20
5.2.1.1 Local Layout . 21

5.2.2 Layout for .sty files . 21
5.2.3 Layout for .cls files . 23
5.2.4 Creating templates . 23
5.2.5 Upgrading old layout files . 24

i

Contents

5.3 The layout file format . 24
5.3.1 The document class declaration 24
5.3.2 The Module declaration . 26
5.3.3 Format number . 27
5.3.4 General text class parameters 27
5.3.5 ClassOptions section . 30
5.3.6 Paragraph styles . 31
5.3.7 Internationalization of Paragraph Styles 37
5.3.8 Floats . 38
5.3.9 Flex insets and InsetLayout 40
5.3.10 Counters . 42
5.3.11 Font description . 43
5.3.12 Citation format description 44

5.4 Tags for XHTML output . 45
5.4.1 Paragraph styles . 46
5.4.2 InsetLayout XHTML . 48
5.4.3 Float XHTML . 49
5.4.4 Bibliography formatting . 49
5.4.5 LYX-generated CSS . 50

6 Including External Material 51
6.1 How does it work? . 51
6.2 The external template configuration file 52

6.2.1 The template header . 53
6.2.2 The Format section . 54
6.2.3 Preamble definitions . 55

6.3 The substitution mechanism . 55
6.4 Security discussion . 57

ii

1 Introduction
This manual covers the customization features present in LYX. In it, we discuss
issues like keyboard shortcuts, screen previewing options, printer options, sending
commands to LYX via the LYX Server, internationalization, installing new LATEX
classes and LYX layouts, etc. We can’t possibly hope to touch on everything you can
change—our developers add new features faster than we can document them—but
we will explain the most common customizations and hopefully point you in the right
direction for some of the more obscure ones.

1

2 LYX configuration files
This chapter aims to help you to find your way through the LYX configuration files.
Before continuing to read this chapter, you should find out where your LYX library
and user directories are by using Help .About LYX. The library directory is the place
where LYX places its system-wide configuration files; the user directory is where you
can place your modified versions. We will call the former LYXDir and the latter UserDir
in the remainder of this document.

2.1 What’s in LYXDir?
LYXDir and its sub-directories contain a number of files and that can be used to
customize LYX’s behavior. You can change many of these files from within LYX itself
through the Tools .Preferences dialog. Most customization that you will want to do
in LYX is possible through this dialog. However, many other inner aspects of LYX can
be customized by modifying the files in LYXDir. These files fall in different categories,
described in the following subsections.

2.1.1 Automatically generated files
The files, which are to be found in UserDir, are generated when you configure LYX.
They contain various default values that are guessed by inspection. In general, it is
not a good idea to modify them, since they might be overwritten at any time.

lyxrc.defaults contains defaults for various commands.

packages.lst contains the list of packages that have been recognized by LYX. It
is currently unused by the LYX program itself, but the information ex-
tracted, and more, is made available with Help . LATEX Configuration.

textclass.lst the list of text classes that have been found in your layout/ directo-
ries, along with the associated LATEX document class and their description.

lyxmodules.lst the list of layout modules found in your layout/ directories

*files.lst lists of various sorts of LATEX-related files found on your system

doc/LATEXConfig.lyx is automatically generated during configuration from the file
LATEXConfig.lyx.in. It contains information on your LATEX configuration.

3

2 LYX configuration files

2.1.2 Directories
These directories are duplicated between LYXDir and UserDir. If a particular files
exists in both places, the one in UserDir will be used.

bind/ this directory contains files with the extension .bind that define the key-
bindings used in LYX. If there exists an internationalized version of the
bind file named $LANG_xxx.bind, that will be used first.

clipart/ contains graphics files that can be included in documents.

doc/ contains LYX documentation files (including the one you are currently
reading). The file LATEXConfig.lyx deserves special attention, as noted
above. The internationalized help docs are in subdirectories doc/xx where
“xx” is the ISO language code. See chapter 4 for details.

examples/ contains example files that explain how to use some features. In the file
browser, press the Examples button to get there.

images/ contains image files that are used by the Document dialog. In addition,
it also contains the individual icons used in the toolbar and the banners
that can be shown when LYX is launched.

kbd/ contains keyboard keymapping files. See Chapter 4.2 for details.

layouts/ contains the text class and module files described in Chapter 5.

lyx2lyx contains the lyx2lyx Python scripts used to convert between LYX ver-
sions. These can be run from the command line if, say, you want to
batch-convert files.

scripts/ contains some files that demonstrate the capabilities of the External Tem-
plate feature. Also contains some scripts used by LYX itself.

templates/ contains the standard LYX template files described in Chapter 5.2.4.

ui/ contains files with the extension .ui that define the user interface to LYX.
That is, the files define which items appear in which menus and the items
appearing on the toolbar.

2.1.3 Files you don’t want to modify
These files are used internally by LYX and you generally do not need to modify them
unless you are a developer.

CREDITS this file contains the list of LYX developers. The contents are displayed
with the menu entry Help .About LYX.

4

2.2 Your local configuration directory

chkconfig.ltx this is a LATEX script used during the configuration process. Do not
run directly.

configure.py this is the script that is used to re-configure LYX. It creates configu-
ration files in the directory it was run from.

2.1.4 Other files needing a line or two...
encodings this contains tables describing how different character encodings can be

mapped to Unicode

external_templates this file contains the templates available to the new Exter-
nal Template feature.

languages this file contains a list of all the languages currently supported by LYX.

2.2 Your local configuration directory
Even if you are using LYX as an unprivileged user, you might want to change LYX
configuration for your own use. The UserDir directory contains all your personal con-
figuration files. This is the directory described as “user directory” in Help .About LYX.
This directory is used as a mirror of LYXDir, which means that every file in UserDir
is a replacement for the corresponding file in LYXDir. Any configuration file described
in the above sections can be placed either in the system-wide directory, in which case
it will affect all users, or in your local directory for your own use.
To make things clearer, let’s provide a few examples:

• The preferences set in the Tools .Preferences dialog are saved to a file preferences
in UserDir.

• When you reconfigure using Tools .Reconfigure, LYX runs the configure.py
script, and the resulting files are written in your local configuration directory.
This means that any additional text class file that you might have added in
UserDir/layouts will be added to the list of classes in the Document .Settings
dialog.

• If you get some updated documentation from LYX ftp site and cannot install
it because you do not have sysadmin rights on your system, you can just copy
the files in UserDir/doc/ and the items in the Help menu will open them!

2.3 Running LYX with multiple configurations
The configuration freedom of the local configuration directory may not suffice if you
want to have more than one configuration at your disposal. For example, you may
want to be use different key bindings or printer settings at different times. You can

5

2 LYX configuration files

achieve this by having several such directories. You then specify which directory to
use at run-time.
Invoking LYX with the command line switch -userdir <some directory> instructs

the program to read the configuration from that directory, and not from the default
directory. (You can determine the default directory by running LYX without the
-userdir switch.) If the specified directory does not exist, LYX offers to create it for
you, just like it does for the default directory on the first time you run the program.
You can modify the configuration options in this additional user directory exactly
as you would for the default directory. These directories are completely independent
(but read on). Note that setting the environment variable LYX_USERDIR_VER to some
value has exactly the same effect.
Having several configurations also requires more maintenance: if you want to add

a new layout to NewUserDir/layouts which you want available from all your config-
urations, you must add it to each directory separately. You can avoid this with the
following trick: after LYX creates the additional directory, most of the subdirectories
(see above) are empty. If you want the new configuration to mirror an existing one,
replace the empty subdirectory with a symbolic link to the matching subdirectory
in the existing configuration. Take care with the doc/ subdirectory, however, since
it contains a file written by the configuration script (also accessible through Tools .
Reconfigure) which is configuration-specific.

6

3 The Preferences dialog
All options of the preferences dialog are described in the Appendix The Preferences
Dialog in the User’s Guide. For some options you might find here more details.

3.1 Formats
The first step is to define your file formats if they are not already defined. To do
so, open the Tools .Preferences dialog. Under File Handling .File formats press the
New. . . button to define your new format. The Format field contains the name used
to identify the format in the GUI. The Short Name is used to identify the format
internally. You will also need to enter a file extension. These are all required. The
optional Shortcut field is used to provide a keyboard shortcut on the menus. (For
example, pressing Alt-V F D will View .View (Other Formats) .DVI.)
A Format can have a Viewer and an Editor associated with it. For example, you

might want to use Ghostview to view PostScript files. You can enter the command
needed to start the program in the corresponding fields. In defining this command,
you can use the four variables listed in the next section. The viewer is launched when
you view an image in LYX or use the View menu. The editor is for example launched
when you right-click on an image and choose Edit externally in the appearing context
menu.
The Document format option tells LYX that a format is suitable for document

export. If this is set and if a suitable conversion route exists (see sec. 3.3), the format
will appear in the File .Export menu. The format will also appear in the View menu
if a viewer is specified for the format. Pure image formats, such as png, should not
use this option. Formats that can both represent vector graphics and documents like
pdf should use it.
The option Vector graphics format tells LYX that a format can contain vector graph-

ics. This information is used to determine the target format of included graphics for
pdflatex export. Included graphics may need to be converted to either pdf, png, or
jpg, since pdflatex cannot handle other image formats. If an included graphic is not
already in pdf, png, or jpg format, it is converted to pdf if the vector format option
is set, and otherwise to png.

3.2 Copiers
Since all conversions from one format to another take place in LYX’s temporary
directory, it is sometimes necessary to modify a file before copying it to the temporary

7

3 The Preferences dialog

directory in order that the conversion may be performed.1 This is done by a Copier:
It copies a file to (or from) the temporary directory and may modify it in the process.
The definitions of the copiers may use four variables:

$$s The LYX system directory (e. g. /usr/share/lyx).

$$i The input file

$$o The output file

$$l The ‘LATEX name’

The latter should be the filename as it would be used in a LATEX’s \include command.
It is relevant only when exporting files suitable for such inclusion.
Copiers can be used to do almost anything with output files. For example, suppose

you want generated pdf files to be copied to a special directory, /home/you/pdf/.
Then you could write a shell script such as this one:

#!/bin /bash
FROMFILE=$1
TOFILE=‘basename $2 ‘
cp $FROMFILE /home/you/pdf /$TOFILE

Save it in your local LYX directory—say, /home/you/.lyx/scripts/pdfcopier.sh—and
make it executable, if you need to do so on your platform. Then, in the Tools .
Preferences dialog, select under File Handling .File formats the PDF(pdflatex) for-
mat—or one of the other pdf formats—and enter pdfcopier.sh $$i $$o into the
Copier field.
Copiers are used by LYX in various of its own conversions. For example, if appro-

priate programs are found, LYX will automatically install copiers for the HTML and
HTML (MS Word) formats. When these formats are exported, the copier sees that
not just the main HTML file but various associated files (style files, images, etc.) are
also copied. All these files are written to a subdirectory of the directory in which the
original LYX file was found.2

3.3 Converters
You can define your own Converters to convert files between different formats. This
is done in the Tools .Preferences .File Handling .Converters dialog.

1For example, the file may refer to other files—images, for example—using relative file names, and
these may become invalid when the file is copied to the temporary directory.

2This copier can be customized. The optional “-e” argument takes a comma-separated list of
extensions to be copied; if it is omitted, all files will be copied. The “-t” argument determines
the extension added to the generated directory. By default, it is “LYXconv”, so HTML generated
from /path/to/filename.lyx will end up in /path/to/filename.html.LYXconv.

8

3.3 Converters

To define a new converter, select the From format and To format from the drop-
down lists, enter the command needed for the conversion, and then press the Add
button. Several variables can be used in the definition of converters:

$$s The LYX system directory

$$i The input file

$$o The output file

$$b The base filename of the input file (i. g., without the extension)

$$p The path to the input file

$$r The path to the original input file (this is different from $$p when a chain
of converters is called)

$$e The iconv name for the encoding of the document.

In the Extra Flag field you can enter the following flags, separated by commas:

latex This converter runs some form of LATEX. This will make LYX’s LATEX
error logs available.

needaux Needs the LATEX .aux file for the conversion.

xml Output is XML.

The following three flags are not really flags at all because they take an argument in
the key = value format:

parselog If set, the converter’s standard error will be redirected to a file infile.out,
and the script given as argument will be run as: script < infile.out
> infile.log. The argument may contain $$s.

resultdir The name of the directory in which the converter will dump the generated
files. LYX will not create this directory, and it does not copy anything into
it, though it will copy this directory to the destination. The argument
may contain $$b, which will be replaced by the base name of the input
and output files, respectively, when the directory is copied.
Note that resultdir and usetempdir make no sense together. The latter
will be ignored if the former is given.

resultfile Determines the output file name and may, contain $$b. Sensible only
with resultdir and optional even then; if not given, it defaults to ‘index’.

9

3 The Preferences dialog

None of these last three are presently used in any of the converters that are installed
with LYX.
You do not have to define converters for all formats between which you want to

convert. For example, you will note that there is no ‘LYX to PostScript’ converter,
but LYX will export PostScript. It does so by first creating a LATEX file (no converter
needs to be defined for this) which is then converted to DVI using the ‘LATEX to DVI’
converter, and finally converting the resulting DVI file to PostScript. LYX finds such
‘chains’ of converters automatically, and it will always choose the shortest possible
chain. You can, though, still define multiple conversion methods between file formats.
For example, the standard LYX configuration provides three ways to convert LATEX
to PDF: Directly, using pdflatex; via (DVI and) PostScript, using ps2pdf; or via DVI,
using dvipdfm. To define such alternate chains, you must define multiple target ‘file
formats’, as described in section 3.1. For example, in the standard configuration, the
formats named pdf, pdf2, and pdf3 are defined, all of which share the extension .pdf,
and which correspond to the conversion methods just mentioned.

10

4 Internationalizing LYX

LYX supports using a translated interface. Last time we checked, LYX provided text in
thirty languages. The language of choice is called your locale. (For further reading on
locale settings, see also the documentation for locale that comes with your operating
system. For Linux, the manual page for locale(5) could be a good place to start).
Notice that these translations will work, but do contain a few flaws. In particular,

all dialogs have been designed with the English text in mind, which means that some
of the translated text will be too large to fit within the space allocated. This is only
a display problem and will not cause any harm. Also, you will find that some of the
translations do not define shortcut keys for everything. Sometimes, there are simply
not enough free letters to do it. Other times, the translator just hasn’t got around
to doing it yet. Our localization team, which you may wish to join,1 will of course
try to fix these shortcomings in future versions of LYX.

4.1 Translating LYX

4.1.1 Translating the graphical user interface (text messages).
LYX uses the GNU gettext library to handle the internationalization of the interface.
To have LYX speak your favorite language in all menus and dialogs, you need a po-file
for that language. When this is available, you’ll have to generate a mo-file from it and
install the mo-file. The process of doing all of this is explained in the documentation
for GNU gettext. It is possible to do this just for yourself, but if you’re going to
do it, you might as well share the results of your labors with the rest of the LYX
community. Send a message to the LYX developers’ list for more information about
how to proceed.
In short, this is what you should do (xx denotes the language code):

• Check out the LYX source code. (See the information on the web.)

• Copy the file lyx.pot to the folder of the **.po files. Then rename it to
xx.po. (If lyx.pot doesn’t exist anywhere, it can be remade with the console
command make lyx.pot in that directory, or you can use an existing po-file
for some other language as a template).

1If you are a fluent speaker of a language other than English, joining these teams is a great way
to give back to the LYX community!

11

http://www.lyx.org/HowToUseSVN

4 Internationalizing LYX

• Edit xx.po.2 For some menu- and widget-labels, there are also shortcut keys
that should be translated. Those keys are marked after a ‘|’, and should be
translated according to the words and phrases of the language. You should
also fill also out the information at the beginning of the new po-file with your
email-address, etc., so people know where to reach you with suggestions and
entertaining flames.

If you are just doing this on your own, then:

• Generate xx.mo. This can be done with msgfmt -o xx.mo < xx.po.

• Copy the mo-file to your locale-tree, at the correct directory for application mes-
sages for the language xx, and under the name lyx.mo (e. g. /usr/local/share/locale/xx/LC_MESSAGES/lyx.mo.

As said, however, it would be best if the new po-file could be added to the LYX
distribution, so others can use it. Adding it involves making additional changes to
LYX. So send an email to the developers’ mailing list if you’re interested in doing
that.

4.1.1.1 Ambiguous messages

Sometimes it turns out that one English message needs to be translated into different
messages in the target language. One example is the message To which has the Ger-
man translation Nach or Bis, depending upon exactly what the English “to” means.
GNU gettext does not handle such ambiguous translations. Therefore you have to
add some context information to the message: Instead of To it becomes To[[as in
’From format x to format y’]] and To[[as in ’From page x to page y’]].
Now the two occurrences of To are different for gettext and can be translated cor-
rectly to Nach and Bis, respectively.
Of course the context information needs to be stripped off the original message

when no translation is used. Therefore you have to put it in double square brackets
at the end of the message (see the example above). The translation mechanism of
LYX ensures that everything in double square brackets at the end of messages is
removed before displaying the message.

4.1.2 Translating the documentation.
The online documentation (in the Help-menu) can (and should!) be translated. If
there are translated versions of the documentation available3 and the locale is set ac-
cordingly, these will be used automagically by LYX. LYX looks for translated versions
as LYXDir/doc/xx/DocName.lyx, where xx is the code for the language currently in

2This is just a text file, so it can be edited in any text editor. But there are also specialized
programs that support such editing, such as Poedit (for all platforms) or KBabel (for KDE).
Emacs contains a ‘mode’ for editing po files, as well.

3As of March 2008, at least some of the documents have been translated into fourteen languages,
with the Tutorial available in a few more.

12

4.2 International Keymap Stuff

use. If there are no translated documents, the default English versions will be dis-
played. Note that the translated versions must have the same filenames (DocName
above) as the original. If you feel up to translating the documentation (an excellent
way to proof-read the original documentation by the way!), there are a few things
you should do right away:

• Check out the documentation translation web page at http://www.lyx.org/Translation.
That way, you can find out which (if any) documents have already been trans-
lated into your language. You can also find out who (if anyone) is organizing the
effort to translate the documentation into your language. If no one is organizing
the effort, please let us know that you’re interested.

Once you get to actually translating, here’s a few hints for you that may save you
trouble:

• Join the documentation team! There is information on how to do that in
Intro.lyx (Help . Introduction), which by the way is the first document you
should translate.

• Learn the typographic conventions for the language you are translating to. Ty-
pography is an ancient art and over the centuries, a great variety of conventions
have developed throughout different parts of the world. Also study the profes-
sional terminology amongst typographers in your country. Inventing your own
terminology will only confuse the users. (Warning! Typography is addictive!)

• Make a copy of the document. This will be your working copy. You can use
this as your personal translated help-file by placing it in your UserDir/doc/xx/
directory.

• Sometimes the original document (from the LYX-team) will be updated. Use
the source viewer at http://www.lyx.org/trac/timeline to see what has been
changed. That way you can easily see which parts of the translated document
need to be updated.

If you ever find an error in the original document, fix it and notify the rest of the
documentation team of the changes! (You didn’t forget to join the documentation
team, did you?)

4.2 International Keymap Stuff
The next two sections describe the .kmap and .cdef file syntax in detail. These
sections should help you design your own key map if the ones provided do not meet
your needs.

13

http://www.lyx.org/Translation
http://www.lyx.org/trac/timeline

4 Internationalizing LYX

4.2.1 The .kmap File
A .kmap file maps keystrokes to characters or strings. As the name suggests, it sets
a keyboard mapping. The .kmap file keywords kmap, kmod, kxmod, and kcomb are
described in this section.

kmap Map a character to a string

\kmap char string

This will map char to string. Note that in string, the double-quote (") and the
backslash (\) must be escaped with a preceding backslash (\).
An example of a kmap statement to cause the symbol / to be output for the

keystroke & is:

\kmap & /

kmod Specify an accent character

\kmod char accent allowed

This will make the character char be an accent on the allowed character(s). This is
the dead key4 mechanism.
If you hit char and then another key not in allowed, you will get a char followed

by the other, not allowed key, as output. Note that a Backspace cancels a dead key,
so if you hit char Backspace, the cursor will not go one position backwards but will
instead cancel the effect that char might have had on the next keystroke.
The following example specifies that the character ’ is to be an acute accent, allowed

on the characters a, e, i, o, u, A, E, I, O, and U:

\kmod ’ acute aeiouAEIOU

kxmod Specify an exception to the accent character

\kxmod accent char result

This defines an exception for accent on char. The accent must have been assigned a
keystroke with a previous \kmod declaration and char must not belong in the allowed
set of accent. When you enter the accent char sequence, result is produced. If such
a declaration does not exist in the .kmap file and you enter accent char, you get
accent_key char where accent_key is the first argument of the \kmod declaration.
The following command produces causes äi to be produced when you enter acute-i

(’i):
4The term dead key refers to a key that does not produce a character by itself, but when followed
with another key, produces the desired accent character. For example, a German character with
an umlaut like ä can be produced in this manner.

14

4.2 International Keymap Stuff

\kxmod acute i "\\’{\\i}"

kcomb Combine two accent characters

\kcomb accent1 accent2 allowed

This one is getting pretty esoteric. It allows you to combine the effect of accent1 and
accent2 (in that order!) on allowed chars. The keystrokes for accent1 and accent2
must have been set with a \kmod command at a previous point in the file.
Consider this example from the greek.kmap file:

\kmod ; acute aeioyvhAEIOYVH \kmod : umlaut iyIY \kcomb acute umlaut iyIY

This allows you to press ;:i and get the effect of \’{\"{i}}. A backspace in this case
cancels the last dead key, so if you press ;: Backspace i you get \’{i}.

4.2.2 The .cdef File
After the .kmap mapping is performed, a .cdef file maps the strings that the symbols
generate to characters in the current font. The LYX distribution currently includes
at least the iso8859-1.cdef and iso8859-2.cdef files.
In general the .cdef file is a sequence of declarations of the form

char_index_in_set string

For example, in order to map \’{e} to the corresponding character in the iso-8859-1
set (233), the following declaration is used

233 "\\’{e}"

with \ and " being escaped in string. Note that the same character can apply to
more than one string. In the iso-8859-7.cdef file you have

192 "\\’{\\\"{i}}"
192 "\\\"{\\’{i}}"

If LYX cannot find a mapping for the string produced by the keystroke or a deadkey
sequence, it will check if it looks like an accented char and try to draw an accent over
the character on screen.

15

4 Internationalizing LYX

4.2.3 Dead Keys
There is a second way to add support for international characters through so-called
dead-keys. A dead-key works in combination with a letter to produce an accented
character. Here, we’ll explain how to create a really simple dead-key to illustrate how
they work.
Suppose you happen to need the circumflex character, “ˆ”. You could bind the ^-

key [a.k.a. Shift-6] to the LYX command accent-circumflex in your lyxrc file. Now,
whenever you type the ^-key followed by a letter, that letter will have a circumflex
accent on it. For example, the sequence “^e” produces the letter: “ê”. If you tried
to type “^t”, however, LYX will complain with a beep, since a “t” never takes a
circumflex accent. Hitting Space after a dead-key produces the bare-accent. Please
note this last point! If you bind a key to a dead-key, you’ll need to rebind the
character on that key to yet another key. Binding the ,-key to a cedilla is a bad idea,
since you’ll only get cedillas instead of commas.
One common way to bind dead-keys is to use Meta-, Ctrl-, and Shift- in combination

with an accent, like “~” or “,” or “^”. Another way involves using xmodmap and
xkeycaps to set up the special Mode_Switch key. The Mode_Switch acts in some
ways just like Shift and permits you to bind keys to accented characters. You can
also turn keys into dead-keys by binding them to something like usldead_cedilla
and then binding this symbolic key to the corresponding LYX command.5 You can
make just about anything into the Mode_Switch key: One of the Ctrl- keys, a spare
function key, etc. As for the LYX commands that produce accents, check the entry
for accent-acute in the Reference Manual. You’ll find the complete list there.

4.2.4 Saving your Language Configuration
You can edit your preferences so that your desired language environment is automat-
ically configured when LYX starts up, via the Edit .Preferences dialog.

5Note from John Weiss: This is exactly what I do in my ~/.lyx/lyxrc and my ~/.xmodmap files.
I have my Scroll Lock key set up as Mode_Shift and a bunch of these “usldead_*” symbolic
keys bound such things as Scroll Lock-^ and Scroll Lock-~. This is how I produce my accented
characters.

16

5 Installing New Document Classes,
Layouts, and Templates

In this chapter, we describe the procedures for creating and installing new LYX lay-
out and template files, as well as offer a refresher on correctly installing new LATEX
document classes.
First, let us a say a few words about how one ought to think about the relation

between LYX and LATEX. The thing to understand is that, in a certain sense, LYX
doesn’t know anything about LATEX. Indeed, from LYX’s point of view, LATEX is just
one of several “backend formats” in which it is capable of producing output. Other
such formats are DocBook, plaintext, and XHTML. LATEX is, of course, a particularly
important format, but very little of the information LYX has about LATEX is actually
contained in the program itself.1 Rather, that information, even for the standard
classes like article.cls, is contained in ‘layout files’. Similarly, LYX itself does not
know much about DocBook or XHTML. What it knows is contained in layout files.
You can think of the layout file for a given document class as a translation manual

between LYX constructs—paragraphs with their corresponding styles, certain sorts
of insets, etc—and the corresponding LATEX, DocBook, or XHTML constructs. Al-
most everything LYX knows about article.cls, for example, is contained in the file
article.layout and in various other files it includes. For this reason, anyone intend-
ing to write layout files should plan to study the existing files. A good place to start
is with stdsections.inc, which is included in article.layout, book.layout, and
many of the other layout files for document classes. This file is where sections and
the like are defined: stdsections.inc tells LYX how paragraphs that are marked
with the Section, Subsection, etc, styles can be translated into corresponding LATEX,
DocBook, and XHTML commands and tags. The article.layout file basically just
includes several of these std*.inc files.
Defining the LYX–LATEX correspondence is not the only thing layout files do,

though. Their other job is to define how the LYX constructs themselves will ap-
pear on-screen. The fact that layout files have these two jobs is often a source of
confusion, because they are completely separate. Telling LYX how to translate a cer-
tain paragraph style into LATEX does not tell LYX how to display it; conversely, telling
LYX how to display a certain paragraph style does not tell LYX how to translate it
into LATEX (let alone tell LATEX how to display it). So, in general, when you define a
new LYX construct, you must always do two quite separate things: (i) tell LYX how

1Some commands are sufficiently complex that they are “hardcoded” into LYX. But the developers
generally regard this as a Bad Thing.

17

5 Installing New Document Classes

to translate it into LATEX and (ii) tell LYX how to display it.
Much the same is true, of course, as regards LYX’s other backend formats, though

XHTML is in some ways different, because in that case LYX is able, to some extent,
to use information about how it should display a paragraph on the screen to output
information (in the form of CSS) about how the paragraph should be displayed in a
browser. Even in this case, however, the distinction between what LYX does internally
and how things are rendered externally remains in force, and the two can be controlled
separately. See 5.4 for the details.

5.1 Installing new LATEX files
Some installations may not include a LATEX package or class file that you would like
to use within LYX. For example, you might need FoilTEX, a package for preparing
slides for overhead projectors. Modern LATEX distributions like TEXLive (2008 or
newer) or MiKTEX provide a user interface for installing such packages. For example,
with MiKTEX, you start the program “Package Manager” to get a list of available
packages. To install one of them, right click on it or use the corresponding toolbar
button.
If your LATEX distribution does not provide such a ‘package manager’, or if the

package is not available from your distribution, then follow these steps to install it
manually:

1. Get the package from CTAN or wherever.

2. If the package contains a file with the ending “.ins” (is the case for FoilTEX)
then open a console, change to the folder of this file and execute the command
latex foiltex.ins. You have now unpacked the package and have all files to
install it. Most LATEX-packages are not packed and you can skip this step.

3. Now you need to decide if the package should be available for all users or only
for you.

a) On *nix systems (Linux, OSX, etc.), if you want the new package to be
available for all users on your system, then install it in your ‘local’ TEX
tree, otherwise install it in your own ‘user’ TEX tree. Where these trees
should be created, if they do not already exist, depends on your system.
To find this out, look in the file texmf.cnf.2 The location of the ‘local’
TEX tree is defined by the TEXMFLOCAL variable; this is usually somewhere
like /usr/local/share/texmf. The location of the ‘user’ TEX tree is
defined by TEXMFHOME and is commonly $HOME/texmf. (If these variables
are not predefined, you have to define them.) You’ll probably need root
permissions to create or modify the ‘local’ tree, but not for your ‘user’

2This is usually in the directory $TEXMF/web2c, though you can execute the command kpsewhich
texmf.cnf to locate it.

18

http://www.ctan.org/

5.2 Types of layout files

tree.
In general, it is recommended to install in the user tree because your user
will not be modified or even overwritten when you upgrade your system.
It will typically also be backed up together with everything else when you
backup your home directory (which, of course, you do on a regular basis).

b) On Windows, if you want the new package to be available for all users
on your system, change to the folder where LATEX is installed and then
change to the subfolder ~\tex\latex. (For MiKTEX, this would be by
default the folder ~:\Programs\MiKTEX\tex\latex.)3 Create there a new
folder foiltex and copy all files of the package into it.
If the package should only available for you or you don’t have admin per-
missions, do the same, but in the local LATEX folder. E. g., for MiKTEX 2.8
under Windows XP, this would be the folder:
~:\Documents and Settings\<username>\Application Data\

MiKTEX\2.8\tex\latex
On Vista, it would be:
~:\Users\<username>\AppData\Roaming\2.8\MiKTEX\tex\latex

4. Now one only need to tell LATEX that there are new files. This depends on the
used LATEX-Distribution:

a) For TEXLive execute the command texhash from a console. If you in-
stalled the package for all users, then you will probably need to have root
permissions for that.

b) For MiKTEX, if you have installed the package for all users, start the pro-
gram “Settings (Admin)” and press the button marked “Refresh FNDB”.
Otherwise start the program “Settings” and do the same.

5. Finally, you need to tell LYX that there are new packages available. So, in LYX,
use the menu Tools .Reconfigure and then restart LYX.

Now the package is installed. In our example, the document class Slides (FoilTex)
will now be available under Document .Settings .Document Class.
If you would like to use a LATEX document class that is not even listed in the menu

Document .Settings .Document Class, then you need to create a ‘layout’ file for it.
That is the topic of the next section.

5.2 Types of layout files
This section describes the various sorts of LYX files that contain layout informa-
tion. These files describe various paragraph and character styles, determining how

3Note that this will be the correct path only on English installations. On a German one, it would
be ~:\Programme\MiKTEX\tex\latex, and similarly for other languages.

19

5 Installing New Document Classes

LYX should display them and how they should be translated into LATEX, DocBook,
XHTML, or whatever output format is being used.
We shall try to provide a thorough description of the process of writing layout

files here. However, there are so many different types of documents supported even
by just LATEX that we can’t hope to cover every different possibility or problem you
might encounter. The LYX users’ list is frequented by people with lots of experience
with layout design who are willing to share what they’ve learned, so please feel free
to ask questions there.
As you prepare to write a new layout, it is extremely helpful to look at the layouts

distributed with LYX. If you write a LYX layout for a LATEX document class that
might also be used by others, or write a module that might be useful to others, then
you should consider posting your layout to the layout section on the LyX wiki or
even to the LYX developers’ list, so that it might be included in LYX itself.4

5.2.1 Layout modules

We have spoken to this point about ‘layout files’. But there are different sorts of files
that contain layout information. Layout files, strictly so called, have the .layout
extension and provide LYX with information about document classes. As of LYX
1.6, however, layout information can also be contained in layout modules, which
have the .module extension. Modules are to LATEX packages much as layouts are to
LATEX classes, and some modules—such as the endnotesmodule—specifically provide
support for one package. In a sense, layout modules are similar to included5 files—files
like stdsections.inc—in that modules are not specific to a given document class
but may be used with many different classes. The difference is that using an included
file with article.cls requires editing that file. Modules, by contrast, are selected
in the Document .Settings dialog.
Building modules is the easiest way to get started with layout editing, since it can

be as simple as adding a single new paragraph style or flex inset. But modules may,
in principle, contain anything a layout file can contain.
After creating a new module and copying it to the layouts/ folder, you will need

to reconfigure and then restart LYX for the module to appear in the menu. However,
changes you make to the module will be seen immediately, if you open Document .
Settings, highlight something, and then hit “OK”. It is strongly recommended that
you save your work before doing this. In fact, it is strongly recommended that you not
attempt to edit modules while simultaneously working on actual documents. Though
of course the developers strive to keep LYX stable in such situations, syntax errors
and the like in your module file could cause strange behavior.

4Note that LYX is licensed under the General Public License, so any material that is contributed
to LYX must be similarly licensed.

5These can have any extension, but by convention have the .inc extension.

20

http://wiki.lyx.org/Layouts/Layouts

5.2 Types of layout files

5.2.1.1 Local Layout

Modules are to LYX as packages are to LATEX. Sometimes, however, you find yourself
wanting a specific inset or character style just for one document and writing a module
that will also be available to other documents makes little sense. What you need is
LYX’s “Local Layout”.
You will find it under Document .Settings . Local Layout. The large text box allows

you to enter anything that you might enter in a layout file or module. You can think
of a document’s local layout, in fact, as a module that belongs just to it. So, in
particular, you must enter a Format tag. Any format is acceptable, but one would
normally use the format current at the time. (In LYX 2.0, the current layout format
is 35.) You should be aware that local layout is not supported by versions of LYX
prior to 1.6, so you should not use it if you want to be able to export your document
to LYX 1.5 or earlier (without, that is, losing the local layout information). If you
wish to be able to export to 1.6—local layout is supported in 1.6, though there is no
UI for it—then you should use format 11 and, of course, use only layout constructs
that were available in LYX 1.6.
When you have entered something in the Local Layout pane, LYX will enable the

“Validate” button at the bottom. Clicking this button will cause LYX to determine
whether what you have entered is valid layout information for the chosen format. LYX
will report the result but, unfortunately, will not tell you what errors there might
have been. These will be written to the terminal, however, if LYX is started from a
terminal. You will not be permitted to save your local layout until you have entered
something valid.
The warnings at the end of the previous section apply here, too. Do not play

with local layout while you are actually working, especially if you have not saved
your document. That said, using local layout with a test document can be a very
convenient way to try out layout ideas, or even to start developing a module.

5.2.2 Layout for .sty files
There are two situations you are likely to encounter when wanting to support a
new LATEX document class, involving style (.sty) files and LATEX2ε class (.cls) .
Supporting a style file is usually fairly easy. Supporting a new class file is a bit harder.
We’ll discuss the former in this section and the latter in the next. Similar remarks
apply, of course, if you want to support a new DocBook DTD.
The easier case is the one in which your new document class is provided as a style

file that is to be used in conjunction with an already supported document class. For
the sake of the example, we’ll assume that the style file is called myclass.sty and that
it is meant to be used with report.cls, which is a standard class.
Start by copying the existing class’s layout file into your local directory:6

6Of course, which directory is your local directory will vary by platform, and LYX allows you to
specify your local directory on startup, too, using the -userdir option.

21

5 Installing New Document Classes

cp report.layout ~/.lyx/layouts/myclass.layout

Then edit myclass.layout and change the line:

\DeclareLATEXClass{report}

to read

\DeclareLATEXClass[report, myclass.sty]{report (myclass)}

Then add:

Preamble
\usepackage{myclass}

EndPreamble

near the top of the file.
Start LYX and select Tools .Reconfigure. Then restart LYX and try creating a

new document. You should see "report (myclass)" as a document class option in
the Document .Settings dialog. It is likely that some of the sectioning commands
and such in your new class will work differently from how they worked in the base
class—report in this example—so you can fiddle around with the settings for the
different sections if you wish. The layout information for sections is contained in
stdsections.inc, but you do not need to copy and change this file. Instead, you
can simply add your changes to your layout file, after the line Input stdclass.inc,
which itself includes stdsections.inc. For example, you might add these lines:

Style Chapter
Font

Family Sans
EndFont

End

to change the font for chapter headings to sans-serif. This will override (or, in this
case, add to) the existing declaration for the Chapter style.
Your new package may also provide commands or environments not present in the

base class. In this case, you will want to add these to the layout file. See 5.3 for
information on how to do so.
If myclass.sty can be used with several different document classes, and even if it

cannot, you might find it easiest just to write a module that you can load with the
base class. The simplest possible such module would be:

#\DeclareLYXModule{My Package}
#DescriptionBegin
#Support for mypkg.sty.

22

5.2 Types of layout files

#DescriptionEnd
Format 21
Preamble

\usepackage{mypkg}
EndPreamble

A more complex module might modify the behavior of some existing constructs or
define some new ones. Again, see 5.3 for discussion.

5.2.3 Layout for .cls files
There are two possibilities here. One is that the class file is itself based upon an
existing document class. For example, many thesis classes are based upon book.cls.
To see whether yours is, look for a line like

\LoadClass{book}

in the file. If so, then you may proceed largely as in the previous section, though the
DeclareLATEXClass line will be different. If your new class is thesis and it is based
upon book, then the line should read:7

\DeclareLATEXClass[thesis,book]{thesis}

If, on the other hand, the new class is not based upon an existing class, you will
probably have to “roll your own” layout. We strongly suggest copying an existing
layout file which uses a similar LATEX class and then modifying it, if you can do so.
At least use an existing file as a starting point so you can find out what items you
need to worry about. Again, the specifics are covered below.

5.2.4 Creating templates
Once you have written a layout file for a new document class, you might want to
consider writing a template for it, too. A template acts as a kind of tutorial for your
layout, showing how it might be used, though containing dummy content. You can
of course look at the various templates included with LYX for ideas.
Templates are created just like usual documents: using LYX. The only difference is

that usual documents contain all possible settings, including the font scheme and the
paper size. Usually a user doesn’t want a template to overwrite his preferred settings
for such parameters. For that reason, the designer of a template should remove the
corresponding commands like \font_roman or \papersize from the template LYX
file. This can be done with any simple text-editor, for example vi or notepad.

7And it will be easiest if you save the file to thesis.layout: LYX assumes that the document
class has the same name as the layout file.

23

5 Installing New Document Classes

Put the edited template files you create in UserDir/templates/, copy the ones
you use from the global template directory in LYXDir/templates/ to the same place,
and redefine the template path in the Tools .Preferences .Paths dialog.
Note, by the way, that there is a template which has a particular meaning: defaults.lyx.

This template is loaded every time you create a new document with File .New in or-
der to provide useful defaults. To create this template from inside LYX, all you have
to do is to open a document with the correct settings, and use the Save as Document
Defaults button.

5.2.5 Upgrading old layout files
The format of layout files changes with each LYX release, so old layout files need
to be converted to the new format. This process has been automated since LYX
1.4: If LYX reads a layout file in an older format, it automatically calls the script
layout2layout.py to convert it to a temporary file in current format. The original
file is left untouched. If you use the layout file often, then, you may want to convert
it permanently, so that LYX does not have to do so itself every time. To do this, you
can call the converter manually:

mv myclass.layout myclass.old
python LYXDir/scripts/layout2layout.py myclass.old myclass.layout

You need to replace LYXDir with the name of your LYX system directory, of course.
Note that manual conversion does not affect included files, so these will have to be

converted separately.

5.3 The layout file format
When it’s finally time to get your hands dirty and create or edit your own layout file,
the following sections describe what you’re up against. Our advice is to go slowly,
save and test often, listen to soothing music, and enjoy one or two of your favorite
adult beverages; more if you are getting particularly stuck. It’s really not that hard,
except that the multitude of options can become overwhelming if you try to do too
much in one sitting. Go have another adult beverage, just for good measure.
Note that all the tags used in layout files are case-insensitive. This means that

Style, style and StYlE are really the same tag. The possible values are printed in
brackets after the feature’s name. The default value if a feature isn’t specified inside
a text class-description is typeset emphasized . If the argument has a data type like
“string” or “float”, the default is shown like this: float=default .

5.3.1 The document class declaration
Lines in a layout file which begin with # are comments. There is one exception to
this rule. All *.layout files should begin with a line like:

24

5.3 The layout file format

#% Do not delete the line below; configure depends on this
\DeclareLATEXClass{article}

The second line is used when you (re)configure LYX. The layout file is read by the
LATEX script chkconfig.ltx, in a special mode where # is ignored. The first line is
just a LATEX comment, and the second one contains the declaration of the text class.
If these lines appear in a file named article.layout, then they define a text class
of name article (the name of the layout file) which uses the LATEX document class
article.cls (the default is to use the same name as the layout). The string “article”
that appears above is used as a description of the text class in the Document .Settings
dialog.
Let’s assume that you wrote your own text class that uses the article.cls doc-

ument class, but where you changed the appearance of the section headings. If you
put it in a file myarticle.layout, the header of this file should be:

#% Do not delete the line below; configure depends on this
\DeclareLATEXClass[article]{article (with my own headings)}

This declares a text class myarticle, associated with the LATEX document class
article.cls and described as “article (with my own headings)”. If your text class
depends on several packages, you can declare it as:

#% Do not delete the line below; configure depends on this
\DeclareLATEXClass[article,foo.sty]{article (with my own headings)}

This indicates that your text class uses the foo.sty package. Finally, it is also
possible to declare classes for DocBook code. Typical declarations will look like:

#% Do not delete the line below; configure depends on this
\DeclareDocBookClass[article]{SGML (DocBook article)}

Note that these declarations can also be given an optional parameter declaring the
name of the document class (but not a list).
So, to be as explicit as possible, the form of the layout declaration is:

\DeclareLATEXClass[class,package.sty]{layout description}

The class need only be specified if the name of the LATEX class file and the name of
the layout file are different or if there are packages to load. If the name of the class
file is not specified, then LYX will simply assume that it is the same as the name of
the layout file.
When the text class has been modified to your taste, all you have to do is to copy

it either to LYXDir/layouts/ or to UserDir/layouts, run Tools .Reconfigure, exit
LYX and restart. Then your new text class should be available along with the others.

25

5 Installing New Document Classes

Once the layout file is installed, you can edit it and see your changes without
having to reconfigure or to restart LYX. 8 You can force a reload of the current
layout by using the LYX function layout-reload. There is no default binding for this
function—though, of course, you can bind it to a key yourself. But you will normally
use this function simply by entering it in the mini-buffer.
Warning: layout-reload is very much an ‘advanced feature’. It is strongly recom-

mended that you save your work before using this function. In fact, it is strongly
recommended that you not attempt to edit layout information while simultaneously
working on a document that you care about. Use a test document. Syntax errors and
the like in your layout file could cause peculiar behavior. In particular, such errors
could cause LYX to regard the current layout as invalid and to attempt to switch to
some other layout.9 The LYX team strives to keep LYX stable in such situations, but
safe is better than sorry.10

5.3.2 The Module declaration
A module must begin with a line like the following:

#\DeclareLYXModule[endnotes.sty]{Endnotes}

The mandatory argument, in curly brackets, is the name of the module, as it should
appear in Document .Settings .Modules. The argument in square brackets is optional:
It declares any LATEX packages on which the module depends. Please note that only
packages about which LYX knows should be listed in the square brackets.11 LYX
will not check for arbitrary packages. It is also possible to use the form from->to as
an optional argument, which declares that the module can only be used when there
exists a conversion chain between the formats ‘from’ and ‘to’.
The module declaration should then be followed by lines like the following12:

#DescriptionBegin
#Adds an endnote command, in addition to footnotes.
#You will need to add \theendnotes in TEX code where you
#want the endnotes to appear.
#DescriptionEnd
#Requires: somemodule | othermodule
#Excludes: badmodule

8In versions of LYX prior to 1.6, this was not true. As a result, editing layout files was very time
consuming, since you had constantly to restart LYX to see changes.

9Really bad syntax errors may even caused LYX to exit. This is because certain sorts of errors
may make LYX unable to read any layout information. Please be careful.

10While we’re giving advice: make regular backups. And be nice to your mother.
11The list of such packages is documented only in the source code.
12Preferably in English if the module should be published with LYX. This description will appear in

the list of messages to be translated and will be thus translated with the next interface update.

26

5.3 The layout file format

The description is used in Document .Settings .Modules to provide the user with
information about what the module does. The Requires line is used to identify
other modules with which this one must be used; the Excludes line is used to identify
modules with which this one may not be used. Both are optional, and, as shown,
multiple modules should be separated with the pipe symbol: |. Note that the required
modules are treated disjunctively: at least one of the required modules must be
used. Similarly, no excluded module may be used. Note that modules are identified
here by their filenames without the .module extension. So somemodule is really
somemodule.module.

5.3.3 Format number
The first non-comment line of any layout file, included file, or module must contain
the file format number:

Format [int] The format of the layout file.

This tag was introduced with LYX 1.4.0. Layout files from LYX 1.3.x and earlier
don’t have an explicit file format and are considered to be of format 1. The format
for the present version of LYX is format 21. But each version of LYX is capable of
reading earlier versions’ layout files, just as they are capable of reading files produced
by earlier versions of LYX. There is, however, no provision for converting to earlier
formats. So LYX 1.6.x will not read layout files in format 21 but only files in format
11 or earlier.

5.3.4 General text class parameters
These are general parameters that govern the behavior of an entire document class.
(This does not mean that they must appear in .layout files rather than in modules.
A module can contain any layout tag.)

AddToHTMLPreamble Adds information that will be output in the <head> block when
this document class is output to XHTML. Typically, this would be used to
output CSS style information, but it can be used for anything that can appear
in <head>. Must end with “EndPreamble”.

AddToPreamble Adds information to the document preamble. Must end with “EndPreamble”.

CiteFormat Defines formats for use in the display of bibliographic information. See
Section 5.3.12 for details. Must end with “End”.

ClassOptions Describes various global options supported by the document class.
See Section 5.3.5 for a description. Must end with “End”.

Columns [1 , 2] Whether the class should default to having one or two columns. Can
be changed in the Document .Settings dialog.

27

5 Installing New Document Classes

Counter [string] This sequence defines the properties for a counter. If the counter
does not yet exist, it is created; if it does exist, it is modified. Must end with
“End”.
See Section 5.3.10 for details on counters.

DefaultFont Sets the default font used to display the document. See Section 5.3.11
for how to declare fonts. Must end with “EndFont”.

DefaultModule [string] Specifies a module to be included by default with this doc-
ument class. The module should be specified by filename without the .module
extension. The user can still remove the module, but it will be active at the
outset. (This applies only when new files are created, or when this class is
chosen for an existing document.)

DefaultStyle [string] This is the style that will be assigned to new paragraphs,
usually Standard. This will default to the first defined style if not given, but
you are encouraged to use this directive.

ExcludesModule [string] This tag indicates that the module in question—which
should be specified by filename without the .module extension—cannot be used
with this document class. This might be used in a journal-specific layout file to
prevent, say, the use of the theorems-sec module that numbers theorems by
section. This tag may not be used in a module. Modules have their own way
of excluding other modules (see 5.2.1).

Float Defines a new float. See Section 5.3.8 for details. Must end with “End”.

HTMLPreamble Sets the information that will be output in the <head> block when
this document class is output to XHTML. Note that this will completely over-
ride any prior HTMLPreamble or AddToHTMLPreamble declarations. (Use AddToHTMLPreamble
if you just want to add material to the preamble.) Must end with “EndPreamble”.

HTMLTOCSection [string] The layout to use for the table of contents, bibliography,
and so forth, when the document is output to HTML. For articles, this should
normally be Section; for books, Chapter. If it is not given, then LYX will
attempt to figure out which layout to use.

IfCounter [string] Modifies the properties of the given counter. If the counter does
not exist, the section is ignored. Must end with “End”.
See Section 5.3.10 for details on counters.

IfStyle [string] Modifies the properties of the given paragraph style. If the style
does not exist, the section is ignored. Must end with “End”.

Input As its name implies, this command allows you to include another layout defi-
nition file within yours to avoid duplicating commands. Common examples are
the standard layout files, for example, stdclass.inc, which contains most of
the basic layouts.

28

5.3 The layout file format

InsetLayout This section (re-)defines the layout of an inset. It can be applied to an
existing inset or to a new, user-defined inset, e.g., a new character style. Must
end with “End”.
See Section 5.3.9 for more information.

LeftMargin [string] A string that indicates the width of the left margin on the
screen, for example, “MMMMM”. (Note that this is not a ‘length’, like “2ex”.)

NoCounter [string] This command deletes an existing counter, usually one defined
in an included file.

NoFloat This command deletes an existing float. This is particularly useful when
you want to suppress a float that has been defined in an input file.

NoStyle This command deletes an existing style. This is particularly useful when
you want to suppress a style that has be defined in an input file.

OutputFormat A string indicating the file format (as defined in the Preferences di-
alog) produced by this class. It is mainly useful when OutputType is ‘literate’
and one wants to define a new type of literate document. This string is reset to
‘docbook’, ‘latex’, or ‘literate’ when the corresponding OutputType parameter
is encountered.

OutputType A string indicating what sort of output documents using this class will
produce. At present, the options are: ‘docbook’, ‘latex’, and ‘literate’.

PageStyle [plain , empty, headings] The default pagestyle. Can be changed in the
Document .Settings dialog.

Preamble Sets the preamble for the LATEX document. Note that this will com-
pletely override any prior Preamble or AddToPreamble declarations. (Use
AddToPreamble if you just want to add material to the preamble.) Must end
with “EndPreamble”.

Provides [string] [0 , 1] Whether the class already provides the feature string. A
feature is in general the name of a package (amsmath, makeidx, . . .) or a macro
(url, boldsymbol,. . .); the complete list of supported features is unfortunately
not documented outside the LYX source code—but see LATEXFeatures.cpp if
you’re interested. Help . LATEX Configuration also gives an overview of the sup-
ported packages.

ProvidesModule [string] Indicates that this layout provides the functionality of
the module mentioned, which should be specified by the filename without the
.module extension. This will typically be used if the layout includes the module
directly, rather than using the DefaultModule tag to indicate that it ought
to be used. It could also be used in a module that provided an alternate
implementation of the same functionality.

29

5 Installing New Document Classes

Requires [string] Whether the class requires the feature string. Multiple features
must be separated by commas. Note that you can only request supported
features. (Again, see LATEXFeatures.cpp for a list of these.)

RightMargin A string that indicates the width of the right margin on the screen,
for example, “MMMMM”.

SecNumDepth Sets which divisions get numbered. Corresponds to the secnumdepth
counter in LATEX.

Sides [1 , 2] Whether the class-default should be printing on one or both sides of
the paper. Can be changed in the Document .Settings dialog.

Style This sequence defines a paragraph style. If the style does not yet exist, it is
created; if it does exist, its parameters are modified. Must end with “End”.
See Section 5.3.6 for details on paragraph styles.

TitleLatexName [string="maketitle"] The name of the command or environment
to be used with TitleLatexType.

TitleLatexType [CommandAfter , Environment] Indicates what kind of markup is
used to define the title of a document. CommandAfter means that the macro
with name TitleLatexName will be inserted after the last layout which has
“InTitle 1”. Environment corresponds to the case where the block of para-
graphs which have “InTitle 1” should be enclosed into the TitleLatexName
environment.

TocDepth Sets which divisions are included in the table of contents. Corresponds to
the tocdepth counter in LATEX.

5.3.5 ClassOptions section
The ClassOptions section can contain the following entries:

FontSize [string="10|11|12"] The list of available font sizes for the document’s
main font, separated by “|”.

Header Used to set the DTD line with XML-based output classes. E. g.: PUBLIC
“-//OASIS//DTD DocBook V4.2//EN”.

PageStyle [string="empty|plain|headings|fancy"] The list of available page styles,
separated by “|”.

Other [string=""] Some document class options, separated by a comma, that will
be added to the optional part of the \documentclass command.

The ClassOptions section must end with “End”.

30

5.3 The layout file format

5.3.6 Paragraph styles
A paragraph style description looks like this:13

Style name
...
End

where the following commands are allowed:

Align [block, left, right, center] Paragraph alignment.

AlignPossible [block, left, right, center] A comma separated list of permit-
ted alignments. (Some LATEX styles prohibit certain alignments, since those
wouldn’t make sense. For example a right-aligned or centered enumeration
isn’t possible.)

BabelPreamble Note that this will completely override any prior BabelPreamble
declaration for this style. Must end with “EndBabelPreamble”. See section
5.3.7 for details on its use.

BottomSep [float=0]14 The vertical space with which the last of a chain of para-
graphs with this style is separated from the following paragraph. If the next
paragraph has another style, the separations are not simply added, but the
maximum is taken.

Category [string] The category for this style. This is used to group related styles
in the style combobox on the toolbar. Any string can be used, but you may
want to use existing categories with your own styles.

CommandDepth Depth of XML command. Used only with XML-type formats.

CopyStyle [string] Copies all the features of an existing style into the current one.

DependsOn The name of a style whose preamble should be output before this one.
This allows to ensure some ordering of the preamble snippets when macros
definitions depend on one another.15

EndLabeltype [No_Label, Box, Filled_Box, Static] The type of label that stands
at the end of the paragraph (or sequence of paragraphs if LatexType is Environment,
Item_Environment or List_Environment). No_Label means “nothing”, Box
(resp. Filled_Box) is a white (resp. black) square suitable for end of proof
markers, Static is an explicit text string.

13Note that this will either define a new style or modify an existing one.
14Note that a ‘float’ here is a real number, such as: 1.5.
15Note that, besides that functionality, there is no way to ensure any ordering of preambles. The

ordering that you see in a given version of LYX may change without warning in later versions.

31

5 Installing New Document Classes

EndLabelString [string=""] The string used for a label with a Static EndLabelType.

Font The font used for both the text body and the label. See section 5.3.11. Note
that defining this font automatically defines the LabelFont to the same value.
So you should define this one first if you also want to define LabelFont.

FreeSpacing [0 , 1] Usually LYX doesn’t allow you to insert more than one space
between words, since a space is considered as the separation between two words,
not a character or symbol of its own. This is a very fine thing but sometimes
annoying, for example, when typing program code or plain LATEX code. For
this reason, FreeSpacing can be enabled. Note that LYX will create protected
blanks for the additional blanks when in another mode than LATEX-mode.

HTML* These tags are used with XHTML output. See 5.4.1.

InnerTag [[FIXME]] (Used only with XML-type formats.)

InPreamble [1, 0] If 1, marks the style as to be included in the document preamble
rather than in the document body. This is useful for document classes that want
such information as the title and author to appear in the preamble. Note that
this works only for styles for which the LatexType is Command or Paragraph.

InTitle [1, 0] If 1, marks the style as being part of a title block (see also the
TitleLatexType and TitleLatexName global entries).

ItemSep [float=0] This provides extra space between paragraphs that have the same
style. If you put other styles into an environment, each is separated with the
environment’s Parsep. But the whole items of the environment are additionally
separated with this Itemsep. Note that this is a multiplier.

ItemTag [[FIXME]] (Used only with XML-type formats.)

KeepEmpty [0 , 1] Usually LYX does not allow you to leave a paragraph empty, since
it would lead to empty LATEX output. There are some cases where this could
be desirable however: in a letter template, the required fields can be provided
as empty fields, so that people do not forget them; in some special classes, a
style can be used as some kind of break, which does not contain actual text.

LabelBottomsep [float=0] The vertical space between the label and the text body.
Only used for labels that are above the text body (Top_Environment, Centered_Top_Environment).

LabelCounter [string=""]
The name of the counter for automatic numbering.
This must be given if LabelType is Counter. In that case, the counter will be
stepped each time the style appears.
This may also be given if LabelType is Enumerate, though this case is a bit
complicated. Suppose you declare “LabelCounter myenum”. Then the actual

32

5.3 The layout file format

counters used are myenumi, myenumii, myenumiii, and myenumiv, much as in
LATEX. These counters must all be declared separately.
See Section 5.3.10 for details on counters.

LabelFont The font used for the label. See section 5.3.11.

LabelIndent Text that indicates how far a label should be indented.

Labelsep [string=""] The horizontal space between the label and the text body.
Only used for labels that are not above the text body.

LabelString [string=""] The string used for a label with a Static labeltype. When
LabelCounter is set, this string can be contain the special formatting com-
mands described in Section 5.3.10.16

LabelStringAppendix [string=""] This is used inside the appendix instead of LabelString.
Note that every LabelString statement resets LabelStringAppendix too.

LabelTag [FIXME] (Used only with XML-type formats.)

LabelType [No_Label, Manual, Static, Top_Environment, Centered_Top_Environment,
Counter, Sensitive, Enumerate, Itemize, Bibliography]

• Manual means the label is the very first word (up to the first real blank).
Use protected spaces (like that one) if you want more than one word as
the label.

• Static means the label is simply whatever LabelString declares it to be.
Note that this really is ‘static’.

• Top_Environment and Centered_Top_Environment are special cases of
Static. The label will be printed above the paragraph, but only at the
top of an environment or the top of a chain of paragraphs with this style.
This might be used with the Abstract style, for example.

• Sensitive is a special case for the caption-labels “Figure” and “Table”.
Sensitive means the (hardcoded) label string depends on the kind of
float: It is hardcoded to be ‘FloatType N’, where N is the value of the
counter associated with the float.

• The Counter label type defines automatically numbered labels. The LabelString
will be expanded to resolve any counter references it contains: For ex-
ample, it might be “Section \thechapter.\thesection”. See Section
5.3.10 for more information on counters.

16For the sake of backwards compatibility, the string @style-name @ will be replaced by the ex-
panded LabelString of style style-name . This feature is now obsolete and should be replaced
by the mechanisms of Section 5.3.10.

33

5 Installing New Document Classes

• Enumerate produces the usual sort of enumeration labels. At present,
it is hardcoded to use Arabic numerals, lowercase letters, small Roman
numerals, and uppercase letters for the four possible depths.

• Itemize produces various bullets at the different levels. It is also hard-
coded.

• Bibliography is used internally by LYX and should be used only with
LatexType BibEnvironment.

LangPreamble Note that this will completely override any prior LangPreamble dec-
laration for this style. Must end with “EndLangPreamble”. See section 5.3.7
for details on its use.

LatexName The name of the corresponding LATEX stuff. Either the environment or
command name.

LatexParam An optional parameter for the corresponding LatexName stuff. This
parameter cannot be changed from within LYX.

LatexType [Paragraph, Command, Environment, Item_Environment, List_Environment,
Bib_Environment] How the style should be translated into LATEX.17

• Paragraph means nothing special.
• Command means \LatexName {...}.
• Environment means \begin{LatexName }...\end{LatexName }.
• Item_Environment is the same as Environment, except that an \item is

generated for each paragraph of this environment.
• List_Environment is the same as Item_Environment, except that LabelWidthString

is passed as an argument to the environment. LabelWidthString can be
defined in the Edit .Paragraph settings dialog.

Putting the last few things together, the LATEX output will be either:

\latexname[latexparam]{...}

or:

\begin{latexname}[latexparam] ... \end{latexname}.

depending upon the LATEX type.

LeftMargin [string=""] If you put styles into environments, the leftmargins are not
simply added, but added with a factor 4

depth+4 . Note that this parameter is also
used when the margin is defined as Manual or Dynamic. Then it is added to
the manual or dynamic margin.

17LatexType is perhaps a bit misleading, since these rules apply to SGML classes, too. Visit the
SGML class files for specific examples.

34

5.3 The layout file format

The argument is passed as a string. For example “MM” means that the paragraph
is indented with the width of “MM” in the normal font. You can get a negative
width by prefixing the string with “-”. This way was chosen so that the look is
the same with each used screen font.

Margin [Static, Manual, Dynamic, First_Dynamic, Right_Address_Box]
The kind of margin that the style has on the left side. Static just means
a fixed margin. Manual means that the left margin depends on the string
entered in the Edit .Paragraph Settings dialog. This is used to typeset nice lists
without tabulators. Dynamic means that the margin depends on the size of the
label. This is used for automatic enumerated headlines. It is obvious that the
headline “5.4.3.2.1 Very long headline” must have a wider left margin (as wide
as “5.4.3.2.1” plus the space) than “3.2 Very long headline”, even if standard
“word processors” are not able to do this. First_Dynamic is similar, but only
the very first row of the paragraph is dynamic, while the others are static; this
is used, for example, for descriptions. Right_Address_Box means the margin is
chosen in a way that the longest row of this paragraph fits to the right margin.
This is used to typeset an address on the right edge of the page.

NeedProtect [0 ,1] Whether fragile commands in this style should be \protect’ed.
(Note: This is not whether this command should itself be protected.)

Newline [0, 1] Whether newlines are translated into LATEX newlines (\\) or not. The
translation can be switched off to allow more comfortable LATEX editing inside
LYX.

NextNoIndent [1, 0] If set to true, and if DefaultStyle (usually Standard) para-
graphs are being indented, then the indentation of such a paragraph following
one of this type will be suppressed. (So this will not affect the display of
non-default paragraphs.)

ObsoletedBy Name of a style that has replaced this style. This is used to rename a
style, while keeping backward compatibility.

OptionalArgs [int=0] The number of optional arguments that can be used with
this style. This is useful for things like section headings, and only makes sense
with LATEX. Note that, on output, the optional arguments will all precede any
required arguments (see below). So one can have constructs like:

\mycmd[opt1]{req1}{contents of paragraph}

but one cannot have things like:

\mycmd[opt1]{req1}[opt2]{contents of paragraph}

at least, not without ERT (with which you can have anything).

35

5 Installing New Document Classes

ParbreakIsNewline [0 , 1] Indicates that paragraphs will not be separated by an
empty line in LATEX output, but only by a line break; together with PassThru
1, this allows to emulate a plain text editor (like the ERT inset).

ParIndent [string=""] The indent of the very first line of a paragraph. The Parindent
will be fixed for a certain style. The exception is the default style, since the
indentation for these paragraphs can be prohibited with NextNoIndent. Also,
Standard style paragraphs inside environments use the Parindent of the en-
vironment, not their native one. For example, Standard paragraphs inside an
enumeration are not indented.

Parsep [float=0] The vertical space between two paragraphs of this style.

Parskip [float=0] LYX allows the user to choose either “indent” or “skip” to typeset
a document. When “indent” is chosen, this value is completely ignored. When
“skip” is chosen, the parindent of a LATEXtype “Paragraph” style is ignored and
all paragraphs are separated by this parskip argument. The vertical space is
calculated with value * DefaultHeight where DefaultHeight is the height
of a row with the normal font. This way, the look stays the same with different
screen fonts.

PassThru [0 , 1] Whether the contents of this paragraph should be output in raw
form, meaning without special translations that LATEX would require.

Preamble Information to be included in the LATEX preamble when this style is used.
Used to define macros, load packages, etc., required by this particular style.
Must end with “EndPreamble”.

RefPrefix [string] The prefix to use when creating labels referring to paragraphs
of this type. This allows the use of formatted references.

RequiredArgs [int=0] The number of required arguments that the LATEX command
or environment corresponding to this style expects. In the case of a command,
these are required arguments other than that associated with the content of the
paragraph itself. These do not actually have to be provided: LYX will output
empty arguments if necessary. Note that optional arguments will be output
before required arguments. See the discussion of the OptionalArgs tag above
for more information.

Requires [string] Whether the style requires the feature string. See the descrip-
tion of Provides above (page 32) for information on ‘features’.

RightMargin [string=""] Similar to LeftMargin.

Spacing [single, onehalf, double, other value] This defines what the default
spacing should be in the style. The arguments single, onehalf and double

36

5.3 The layout file format

correspond respectively to a multiplier value of 1, 1.25 and 1.667. If you spec-
ify the argument other, then you should also provide a numerical argument
which will be the actual multiplier value. Note that, contrary to other param-
eters, Spacing implies the generation of specific LATEX code, using the package
setspace.sty.

Spellcheck [0,1] Spellcheck paragraphs of this style. Default is true.

TextFont The font used for the text body . See section 5.3.11.

TocLevel [int] The level of the style in the table of contents. This is used for
automatic numbering of section headings.

TopSep [float=0] The vertical space with which the very first of a chain of para-
graphs with this style is separated from the previous paragraph. If the previous
paragraph has another style, the separations are not simply added, but the
maximum is taken.

5.3.7 Internationalization of Paragraph Styles
LYX has long supported internationalization of layout information, but, until version
2.0, this applied only to the user interface and not to, say, PDF output. Thus, French
authors were forced to resort to ugly hacks if they wanted ‘Théorème 1’ instead of
‘Theorem 1’. Thanks to Georg Baum, that is no longer the case.
If a Style defines text that is to appear in the typeset document, it may use

LangPreamble and BabelPreamble to support non-English and even multi-language
documents correctly. The following excerpt (from the theorems-ams.inc file) shows
how this works:

Preamble

\theoremstyle{remark}
\newtheorem{claim}[thm]{\protect\claimname}

EndPreamble
LangPreamble

\providecommand{\claimname}{_(Claim)}
EndLangPreamble
BabelPreamble

\addto\captions$$lang{\renewcommand{\claimname}{_(Claim)}}
EndBabelPreamble

In principle, any legal LATEX may appear in the LangPreamble and BabelPreamble
tags, but in practice they will typically look as they do here. The key to correct
translation of the typeset text is the definition of the LATEX command \claimname
and its use in \newtheorem.

37

5 Installing New Document Classes

The LangPreamble tag provides for internationalization based upon the overall
language of the document. The contents of the tag will be included in the preamble,
just as with the Preamble tag. What makes it special is the use of the “function”
_(), which will be replaced, when LYX produces LATEX output, with the translation
of its argument into the document language.
The BabelPreamble tag is more complex, since it is meant to provide support

for multi-language documents and so offers an interface to the babel package. Its
contents will be added to the preamble once for each language that appears in the
document. In this case, the argument to _() will be replaced with its translation into
the language in question; the expression $$lang is replaced by the language name
(as used by the babel package).
A German document that also included a French section would thus have the

following in the preamble:

\addto\captionsfrench{\renewcommand{\claimname}{Affirmation}} \addto\captionsngerman{\renewcommand{\claimname}{Behauptung}} \providecommand{\claimname}{Behauptung}

LATEX and babel will then conspire to produce the correct text in the output.
One important point to note here is that the translations are provided by LYX itself,

through the same mechanism it uses for internationalization of the user interface.
This means, in effect, that LangPreamble and BabelPreamble are really only of use
in layout files that are provided with LYX, since text entered in user-created layout
files will not be seen by LYX’s internationalization routines. That said, however, any
layout created with the intention that it will be included with LYX should use these
tags where appropriate.

5.3.8 Floats
Since version 1.3.0 of LYX, it is has been both possible and necessary to define the
floats (figure, table, . . .) in the text class itself. Standard floats are included in the
file stdfloats.inc, so you may have to do no more than add

Input stdfloats.inc

to your layout file. If you want to implement a text class that proposes some other
float types (like the AGU class bundled with LYX), the information below will hope-
fully help you:

Extension [string=””] The file name extension of an auxiliary file for the list of
figures (or whatever). LATEX writes the captions to this file.

GuiName [string=””] The string that will be used in the menus and also for the
caption. This is translated to the current language if babel is used.

HTML* These are used for XHTML output. See 5.4.

38

5.3 The layout file format

IsPredefined [0, 1] Indicates whether the float is already defined in the document
class or if we instead need to load float.sty and use what it provides to define
it on-the-fly. The default is 0, which means: use float.sty. It should be set
to 1 if the float is already defined by the LATEX document class.

ListCommand [string=””] The command used to generate a list of floats of this
type; the leading ‘\’ should be omitted. This must be given if UsesFloatPkg is
false, since there is no standard way to generate this command. It is ignored if
UsesFloatPkg is true, since in that case there is a standard way to define the
command.

ListName [string=””] A title for a list of floats of this kind (list of figures, tables,
or whatever). It is used for the screen label within LYX; it is passed to LATEX
for use as the title there; and it is used as the title in XHTML output. It will
be translated to the document language.

NumberWithin [string=””] This (optional) argument determines whether floats of
this class will be numbered within some sectional unit of the document. For
example, if within is equal to chapter, the floats will be numbered within
chapters.

Placement [string=””] The default placement for the given class of floats. The
string should be as in standard LATEX: t, b, p and h for top, bottom, page,
and here, respectively.18 On top of that there is a new type, H, which does not
really correspond to a float, since it means: put it “here” and nowhere else.
Note however that the H specifier is special and, because of implementation
details, cannot be used in non-built in float types. If you do not understand
what this means, just use “tbp”.

RefPrefix [string] The prefix to use when creating labels referring to floats of this
type. This allows the use of formatted references. Note that you can remove
any RefPrefix set by a copied style by using the special value “OFF”, which
must be all caps.

Style [string=””] The style used when defining the float using \newfloat.

Type [string=””] The “type” of the new class of floats, like program or algorithm.
After the appropriate \newfloat, commands such as \begin{program} or
\end{algorithm*} will be available.

UsesFloatPkg [0, 1] Tells us whether this float is defined using the facilities provided
by float.sty, either by the class file or a package, or on-the-fly by LYX itself.

Note that defining a float with type type automatically defines the corresponding
counter with name type .
18Note that the order of these letters in the string is irrelevant, like in LATEX.

39

5 Installing New Document Classes

5.3.9 Flex insets and InsetLayout
LYX has supported character styles since version 1.4.0; as of version 1.6.0, these are
called Flex insets.
Flex insets come in three different kinds:

• character style (CharStyle): These define semantic markup corresponding to
such LATEX commands as \noun and \code.

• user custom (Custom): These can be used to define custom collapsible insets,
similar to TEX code, footnote, and the like. An obvious example is an endnote
inset, which is defined in the endnote module.

• XML elements (Element): For use with DocBook classes.

Flex insets are defined using the InsetLayout tag, which shall be explained in a
moment.
The InsetLayout tag also serves another function: It can be used to customize

the general layout of many different types of insets. Currently, InsetLayout can be
used to customize the layout parameters for footnotes, marginal notes, note insets,
TEX code (ERT) insets, branches, listings, indexes, boxes, tables, algorithms, URLs,
and optional arguments, as well as to define Flex insets.
The InsetLayout definition must begin with a line of the form:

InsetLayout <Type>

Here <Type> indicates the inset whose layout is being defined, and here there are two
cases.

1. The layout for a pre-existing inset is being modified. In this case, can be <Type>
any one of the following: Algorithm, Branch, Box, Box:shaded, ERT, Figure,
Foot, Index, Info, Info:menu, Info:shortcut, Info:shortcuts, Listings,
Marginal, Note:Comment, Note:Note, Note:Greyedout, OptArg, Table, or
URL.

2. The layout for a Flex inset is being defined. In this case, <Type> must be of the
form “Flex:<name>”, where name may be be any valid identifier not used by a
pre-existing Flex inset. The identifier may include spaces, but in that case the
whole thing must be wrapped in quotes. Note that the definition of a flex inset
must also include a LYXType entry, declaring which type of inset it defines.

The InsetLayout definition can contain the following entries:

BgColor The color for the inset’s background. The valid colors are defined in
src/ColorCode.h.

ContentAsLabel [0 ,1] Whether to use the content of the inset as the label, when
the inset is closed. Default is false.

40

5.3 The layout file format

CopyStyle As with paragraph styles (see page 5.3.6).

CustomPars [0 ,1] Indicates whether the user may employ the Paragraph Settings
dialog to customize the paragraph.

Decoration can be Classic, Minimalistic, or Conglomerate, describing the ren-
dering style used for the inset’s frame and buttons. Footnotes generally use
Classic, ERT insets generally Minimalistic, and character styles Conglomerate.

Display [0,1] Only useful if LatexType is Environment. Indicates whether the envi-
ronment will stand on its own in LATEX output or will appear inline with the sur-
rounding text. If set to false, it is supposed that the LATEX environment ignores
white space (including one newline character) after the \begin{LatexName }
and \end{LatexName } tags. Default is true.

End Required at the end of the InsetLayout declarations.

Font The font used for both the text body and the label. See section 5.3.11. Note
that defining this font automatically defines the LabelFont to the same value,
so define this first and define LabelFont later if you want them to be different.

ForceLTR Force the “latex” language, leading to Left-to-Right (latin) output, e. g.
in TEX code or URL. A kludge.

ForcePlain [0 ,1] Indicates whether the PlainLayout should be used or, instead,
the user can change the paragraph style used in the inset. Default is false.

FreeSpacing As with paragraph styles (see page 32). Default is false.

HTML* These tags control XHTML output. See section 5.4.

InToc [0 ,1] Whether to include the contents of this inset in the strings generated for
the ‘Outline’ pane. One would not, for example, want the content of a footnote
in a section header to be included in the TOC displayed in the outline, but
one would normally want the content of a character style displayed. Default is
false: not to include.

KeepEmpty As with paragraph styles (see page 32). Default is false.

LabelFont The font used for the label. See section 5.3.11. Note that this definition
can never appear before Font, lest it be ineffective.

LabelString What will be displayed on the button or elsewhere as the inset label.
Some inset types (TEX code and Branch) modify this label on the fly.

LatexName The name of the corresponding LATEX stuff. Either the environment or
command name.

41

5 Installing New Document Classes

LatexParam The optional parameter for the corresponding LatexName stuff, includ-
ing possible bracket pairs like []. This parameter cannot be changed from
within LYX.

LatexType As with paragraph styles (see page 34).

LyxType Can be charstyle, custom, element, or end (indicating a dummy defini-
tion ending definitions of charstyles, etc). This entry is required in and is only
meaningful for Flex insets. Among other things, it determines on which menu
this inset will appear. Setting LYXType to charstyle will set MultiPar to false.
MultiPar can be set to true for charstyle insets, if you wish, by setting it after
you set the LYXType.

MultiPar [0 ,1] Whether multiple paragraphs are permitted in this inset. This will
also set CustomPars to the same value and ForcePlain to the opposite value.
These can be reset to other values, if they are used after MultiPar. Default is
true.

NeedProtect [0 ,1] Whether fragile commands in this inset should be \protect’ed.
(Note: This is not whether the command should itself be protected.) Default
is false.

ParbreakIsNewline [0 , 1] As with paragraph styles (see page 36). Default is false.

PassThru [0 ,1] As with paragraph styles (see page 36). Default is false.

Preamble As with paragraph styles (see page 36).

RefPrefix [string] The prefix to use when creating labels referring to insets of this
type. This allows the use of formatted references.

Requires [string] As with paragraph styles (see page 36).

ResetsFont [0,1] Whether this inset should use the font of its surrounding environ-
ment or uses its own. Default is true: uses its own.

Spellcheck [0,1] Spellcheck the contents of this inset. Default is true.

5.3.10 Counters
Since version 1.3.0 of LYX, it is both possible and necessary to define the counters
(chapter, figure, . . .) in the text class itself. The standard counters are defined in the
file stdcounters.inc, so you may have to do no more than add

Input stdcounters.inc

to your layout file to get them to work. But if you want to define custom counters,
then you can do so. The counter declaration must begin with:

42

5.3 The layout file format

Counter CounterName

where of course ‘CounterName’ is replaced by the name of the counter. And it must
end with “End”. The following parameters can also be used:

LabelString [string=””] When defined, this string defines how the counter is dis-
played. Setting this value sets LabelStringAppendix to the same value. The
following special constructs can be used in the string:

• \thecounter will be replaced by the expansion of the LabelString (or
LabelStringAppendix) of the counter counter.

• counter values can be expressed using LATEX-like macros \numbertype {counter },
where numbertype can be:19 arabic: 1, 2, 3,. . . ; alph for lower-case let-
ters: a, b, c, . . . ; Alph for upper-case letters: A, B, C, . . . ; roman for
lower-case roman numerals: i, ii, iii, . . . ; Roman for upper-case roman nu-
merals: I, II, III. . . ; hebrew for hebrew numerals.

If LabelString is not defined, a default value is constructed as follows: if the counter
has a master counter master (defined via Within), the string \themaster.\arabic{counter}
is used; otherwise the string \arabic{counter} is used.

LabelStringAppendix [string=””] Same as LabelString, but for use in the Ap-
pendix.

PrettyFormat [string=””] A format for use with formatted references to this counter.
For example, one might want to have references to section numbers appear as
“Section 2.4”. The string should contain “##”. This will be replaced by the
counter number itself. So, for sections, it would be: Section ##.

Within [string=””] If this is set to the name of another counter, the present counter
will be reset every time the other one is increased. For example, subsection
is numbered inside section.

5.3.11 Font description
A font description looks like this:

Font or LabelFont
...
EndFont

The following commands are available:

Color [none , black, white, red, green, blue, cyan, magenta, yellow]
19Actually, the situation is a bit more complicated: any numbertype other than those described

below will produce arabic numerals. It would not be surprising to see this change in the future.

43

5 Installing New Document Classes

Family [Roman , Sans, Typewriter]

Misc [string] Valid arguments are: emph, noun, underbar, no_emph, no_noun and
no_bar. Each of these turns on or off the corresponding attribute. For example,
emph turns on emphasis, and no_emph turns it off.
If the latter seems puzzling, remember that the font settings for the present
context are generally inherited from the surrounding context. So no_emph would
turn off the emphasis that was anyway in effect, say, in a theorem environment.

Series [Medium , Bold]

Shape [Up , Italic, SmallCaps, Slanted]

Size [tiny, small, normal , large, larger, largest, huge, giant]

5.3.12 Citation format description
The CiteFormat blocks are used to describe how bibliographic information should be
displayed, both within LYX itself (in the citation dialog and in tooltips, for example)
and in XHTML output. Such a block might look like this:

CiteFormat
article ...
book ...
End

The individual lines define how the bibliographic information associated with an
article or book, respectively, is to be displayed, and such a definition can be given
for any ‘entry type’ that might be present in a BibTEX file. LYX defines a default
format in the source code that will be used if no specific definition has been given.
LYX predefines several formats in the file stdciteformats.inc, which is included in
most of LYX’s document classes.
The definitions use a simple language that allows BibTEX keys to be replaced

with their values. Keys should be enclosed in % signs, e.g.: %author%. So a simple
definition might look like this:

misc %author%, “%title”.

This would print the author, followed by a comma, followed by the title, in quotes,
followed by a period.
Of course, sometimes you may want to print a key only if it exists. This can be done

by using a conditional construction, such as: {%volume%[[vol. %volume%]]}. This
says: If the volume key exists, then print “vol. ” followed by the volume key. It is also
possible to have an else clause in the conditional, such as: {%author%[[%author%]][[%editor%,
ed.]]}. Here, the author key is printed if it exists; otherwise, the editor key is
printed, followed by “, ed.” Note that the key is again enclosed in % signs; the entire

44

5.4 Tags for XHTML output

conditional is enclosed in braces; and the if and else clauses are enclosed in double
brackets, “[[“ and “]]”. There must be no space between any of these.
There is one other piece of syntax available in definitions, which looks like this:

{!<i>!}. This defines a piece of formatting information that is to be used when
creating “rich text”. Obviously, we do not want to output HTML tags when writing
plain text, so they should be wrapped in “{!” and “!}”.
Two special sorts of definitions are also possible in a CiteFormat block. An example

of the first would be:

!quotetitle “%title%”

This is an abbreviation, or macro, and it can be used by treating it as if it were a
key: %!quotetitle%. LYX will treat %!quotetitle% exactly as it would treat its
definition. So, let us issue the obvious warning. Do not do this:

!funfun %funfun%

or anything like it. LYX shouldn’t go into an infinite loop, but it may go into a long
one before it gives up.
The second sort of special definition might look like this:

_pptext pp.

This defines a translatable piece of text, which allows relevant parts of the bibli-
ography to be translated. It can be included in a definition by treating it as a key:
%_pptext%. Several of these are predefined in stdciteformats.inc. Note that these
are not macros, in the sense just defined. They will not be expanded.
So here then is an example that use all these features:

!authoredit {%author%[[%author%,]][[{%editor%[[%editor%, %_edtext%,]]}]]}

This defines a macro that prints the author, followed by a comma, if the author
key is defined, or else prints the name of the editor, followed by the _edtext or its
translation (it is by default “ed.”), if the editor key is defined. Note that this is in
fact defined in stdciteformats.inc, so you can use it in your own definitions, or
re-definitions, if you load that file first.

5.4 Tags for XHTML output
As with LATEX or DocBook, the format of LYX’s XHTML output is also controlled
by layout information. In general, LYX provides sensible defaults and, as mentioned
earlier, it will even construct default CSS style rules from the other layout tags. For
example, LYX will attempt to use the information provided in the Font declaration
for the Chapter style to write CSS that will appropriately format chapter headings.

45

5 Installing New Document Classes

In many cases, then, you may not have to do anything at all to get acceptable
XHTML output for your own environments, custom insets, and so forth. But in
some cases you will, and so LYX provides a number of layout tags that can be used
to customize the XHTML and CSS that are generated.
Note that there are two tags, HTMLPreamble and AddToHTMLPreamble that may

appear outside style and inset declarations. See 5.3.4 for details on these.

5.4.1 Paragraph styles
The sort of XHTML LYX outputs for a paragraph depends upon whether we are
dealing with a normal paragraph, a command, or an environment, where this is itself
determined by the contents of the corresponding LATEXType tag.
For a command or normal paragraph, the output XHTML has the following form:

<tag attr=”value”>
<labeltag attr=”value”>Label</labeltag>
Contents of the paragraph.
</tag>

The label tags are of course omitted if the paragraph does not have a label.
For an environment that is not some sort of list, the XHTML takes this form:

<tag attr=”value”>
<itemtag attr=”value”><labeltag attr=”value”>Environment Label</labeltag>First paragraph.</itemtag>
<itemtag>Second paragraph.</itemtag>
</tag>

Note that the label is output only for the first paragraph, as it should be for a
theorem, for example.
For a list, we have one of these forms:

<tag attr=”value”>
<itemtag attr=”value”><labeltag attr=”value”>List Label</labeltag>First item.</itemtag>
<itemtag attr=”value”><labeltag attr=”value”>List Label</labeltag>Second item.</itemtag>
</tag>
<tag attr=”value”>
<labeltag attr=”value”>List Label</labeltag><itemtag attr=”value”>First item.</itemtag>
<labeltag attr=”value”>List Label</labeltag><itemtag attr=”value”>Second item.</itemtag>
</tag>

Note the different orders of labeltag and itemtag. Which order we get depends
upon the setting of HTMLLabelFirst: If HTMLLabelFirst is false (the default), you
get the first of these, with the label within the item; if true, you get the second, with
the label outside the item.

46

5.4 Tags for XHTML output

The specific tags and attributes output for each paragraph type can be controlled
by means of the layout tags we are about to describe. As mentioned earlier, however,
LYX uses sensible defaults for many of these, so you often may not need to do very
much to get good XHTML output. Think of the available tags as there so you can
tweak things to your liking.

HTMLAttr [string] Specifies attribute information to be output with the main tag.
For example, “class=‘mydiv’”. By default, LYX will output “class=‘layoutname’”,
where layoutname is the LYX name of the layout, made lowercase, for exam-
ple: chapter. This should not contain any style information. Use HTMLStyle
for that purpose.

HTMLForceCSS [0,1] Whether to output the default CSS information LYX gener-
ates for this layout, even if additional information is explicitly provided via
HTMLStyle. Setting this to 1 allows you to alter or augment the generated
CSS, rather than to override it completely. Default is 0.

HTMLItem [string] The tag to be used for individual paragraphs of environments,
replacing itemtag in the examples above. Defaults to div.

HTMLItemAttr [string] Attributes for the item tag. Defaults to “class=‘layoutname_item’”.
This should not contain any style information. Use HTMLStyle for that purpose.

HTMLLabel [string] The tag to be used for paragraph and item labels, replacing
labeltag in the examples above. Defaults to span, unless LabelType is either
Top_Environment or Centered_Top_Environment, in which case it defaults to
div.

HTMLLabelAttr [string] Attributes for the label tag. Defaults to “class=‘layoutname_label’”.
This should not contain any style information. Use HTMLStyle for that purpose.

HTMLLabelFirst [0,1] Meaningful only for list-like environments, this tag controls
whether the label tag is output before or inside the item tag. This is used, for ex-
ample, in the description environment, where we want ‘<dt>...</dt><dd>...</dd>.
Default is 0: The label tag is output inside the item tag.

HTMLPreamble Information to be output in the <head> section when this style is
used. This might, for example, be used to include a <script> block defining
an onclick handler.

HTMLStyle CSS style information to be included when this style is used. Note that
this will automatically be wrapped in a layout-generated <style> block, so
only the CSS itself need be included.

HTMLTag [string] The tag to be used for the main label, replacing tag in the exam-
ples above. Defaults to div.

47

5 Installing New Document Classes

HTMLTitle [0,1] Marks this style as the one to be used to generate the <title> tag
for the XHTML file. By default, it is false. The stdtitle.inc file sets it to
true for the title environment.

5.4.2 InsetLayout XHTML
The XHTML output of insets can also be controlled by information in layout files.20

Here, too, LYX tries to provide sensible defaults, and it constructs default CSS style
rules. But everything can be customized.
The XHTML LYX outputs for an inset has the following form:

<tag attr=”value”>
<labeltag>Label</labeltag>
<innertag attr=”value”>Contents of the inset.</innertag>
</tag>

If the inset permits multiple paragraphs—that is, if MultiPar is true—then the
contents of the inset will itself be output as paragraphs formatted according to the
styles used for those paragraphs (standard, quote, and the like). The label tag is of
course omitted if the paragraph does not have a label and, at present, is always span.
The inner tag is optional and, by default, does not appear.
The specific tags and attributes output for each inset can be controlled by means

of the following layout tags.

HTMLAttr [string] Specifies attribute information to be output with the main tag.
For example, “class=‘myinset’ onclick=‘...’”. By default, LYX will out-
put “class=‘insetname’”, where insetname is the LYX name of the inset,
made lowercase and with non-alphanumeric characters converted to under-
scores, for example: footnote.

HTMLForceCSS [0,1] Whether to output the default CSS information LYX gener-
ates for this layout, even if additional information is explicitly provided via
HTMLStyle. Setting this to 1 allows you to alter or augment the generated
CSS, rather than to override it completely. Default is 0.

HTMLInnerAttr [string] Attributes for the inner tag. Defaults to “class=‘insetname_inner’”.

HTMLInnerTag [string] The inner tag, replacing innertag in the examples above.
By default, there is none.

HTMLIsBlock [0,1] Whether this inset represents a standalone block of text (such as
a footnote) or instead represents material that is included in the surrounding
text (such as a branch). Defaults to 1.

20At present, this is true only for “text” insets (insets you can type into) and is not true for
“command” insets (insets that are associated with dialog boxes).

48

5.4 Tags for XHTML output

HTMLLabel [string] A label for this inset, possibly including a reference to a counter.
For example, for footnote, it might be: \arabic{footnote}. This is optional,
and there is no default.

HTMLPreamble Information to be output in the <head> section when this style is
used. This might, for example, be used to include a <script> block defining
an onclick handler.

HTMLStyle CSS style information to be included when this style is used. Note that
this will automatically be wrapped in a layout-generated <style> block, so
only the CSS itself need be included.

HTMLTag [string] The tag to be used for the main label, replacing tag in the exam-
ples above. The default depends upon the setting of MultiPar: If MultiPar is
true, the default is div; if it is false, the default is span.

5.4.3 Float XHTML
The XHTML output for floats too can be controlled by layout information. The
output has the following form:

<tag attr=”value”>
Contents of the float.
</tag>

The caption, if there is one, is a separate inset and will be output as such. Its
appearance can be controlled via the InsetLayout for caption insets.

HTMLAttr [string] Specifies attribute information to be output with the main tag.
For example, “class=‘myfloat’ onclick=‘...’”. By default, LYX will out-
put “class=‘float float-floattype’”, where floattype is LYX’s name for
this type of float, as determined by the float declaration (see 5.3.8), though
made lowercase and with non-alphanumeric characters converted to under-
scores, for example: float-table.

HTMLStyle CSS style information to be included when this float is used. Note that
this will automatically be wrapped in a layout-generated <style> block, so
only the CSS itself need be included.

HTMLTag [string] The tag to be used for this float, replacing “tag” in the example
above. The default is div and will rarely need changing.

5.4.4 Bibliography formatting
The bibliography can be formatted using CiteFormat blocks. See Section 5.3.12 for
the details.

49

5 Installing New Document Classes

5.4.5 LYX-generated CSS
We have several times mentioned that LYX will generate default CSS style rules for
both insets and paragraph styles, based upon the other layout information that is
provided. In this section, we shall say a word about which layout information LYX
uses and how.
At present, LYX auto-generates CSS only for font information, making use of the

Family, Series, Shape, and Size specified in the Font declaration. (See 5.3.11.)
The translation is mostly straightforward and obvious. For example, “Family Sans”
becomes “font-family: sans-serif;”. The correspondence of LYX sizes and CSS
sizes is a little less obvious but nonetheless intuitive. See the getSizeCSS() function
in src/FontInfo.cpp for the details.

50

src/FontInfo.cpp

6 Including External Material

WARNING: This portion of the documentation has not been updated for some time.
We certainly hope that it is still accurate, but there are no guarantees.

The use of material from sources external to LYX is covered in detail in the Em-
bedded Objects manual. This part of the manual covers what needs to happen behind
the scenes for new sorts of material to be included.

6.1 How does it work?
The external material feature is based on the concept of a template. A template is a
specification of how LYX should interface with a certain kind of material. As bundled,
LYX comes with predefined templates for Xfig figures, various raster format images,
chess diagrams, and LilyPond music notation. You can check the actual list by using
the menu Insert .File .External Material. Furthermore, it is possible to roll your own
template to support a specific kind of material. Later we’ll describe in more detail
what is involved, and hopefully you will submit all the templates you create so we
can include them in a later LYX version.
Another basic idea of the external material feature is to distinguish between the

original file that serves as a base for final material and the produced file that is
included in your exported or printed document. For example, consider the case of
a figure produced with Xfig. The Xfig application itself works on an original file
with the .fig extension. Within Xfig, you create and change your figure, and when
you are done, you save the fig-file. When you want to include the figure in your
document, you invoke transfig in order to create a PostScript file that can readily
be included in your LATEX file. In this case, the .fig file is the original file, and the
PostScript file is the produced file.
This distinction is important in order to allow updating of the material while you

are in the process of writing the document. Furthermore, it provides us with the
flexibility that is needed to support multiple export formats. For instance, in the
case of a plain text file, it is not exactly an award-winning idea to include the figure
as raw PostScript. Instead, you would either prefer to just include a reference to the
figure or try to invoke some graphics to ASCII converter to make the final result look
similar to the real graphics. The external material management allows you to do this,
because it is parametrized on the different export formats that LYX supports.
Besides supporting the production of different products according to the exported

format, it supports tight integration with editing and viewing applications. In the

51

6 Including External Material

case of an Xfig figure, you are able to invoke Xfig on the original file with a single
click from within the external material dialog in LYX, and also preview the produced
PostScript file with Ghostview with another click. No more fiddling around with the
command line and/or file browsers to locate and manipulate the original or produced
files. In this way, you are finally able to take full advantage of the many different
applications that are relevant to use when you write your documents, and ultimately
be more productive.

6.2 The external template configuration file
It is relatively easy to add custom external template definitions to LYX. However, be
aware that doing this in an careless manner most probably will introduce an easily
exploitable security hole. So before you do this, please read the discussion about
security in section 6.4.
Having said that, we encourage you to submit any interesting templates that you

create.
The external templates are defined in the LYXDir/lib/external_templates file.

You can place your own version in UserDir/external_templates.
A typical template looks like this:

Template XFig
GuiName "XFig: $$AbsOrRelPathParent$$Basename"
HelpText
An XFig figure.
HelpTextEnd
InputFormat fig
FileFilter "*.fig"
AutomaticProduction true
Transform Rotate
Transform Resize
Format LATEX
TransformCommand Rotate RotationLatexCommand
TransformCommand Resize ResizeLatexCommand
Product "$$RotateFront$$ResizeFront

\\input{$$AbsOrRelPathMaster$$Basename.pstex_t}
$$ResizeBack$$RotateBack"

UpdateFormat pstex
UpdateResult "$$AbsPath$$Basename.pstex_t"
Requirement "graphicx"
ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pstex_t"
ReferencedFile latex "$$AbsPath$$Basename.eps"
ReferencedFile dvi "$$AbsPath$$Basename.eps"
FormatEnd

52

6.2 The external template configuration file

Format PDFLATEX
TransformCommand Rotate RotationLatexCommand
TransformCommand Resize ResizeLatexCommand
Product "$$RotateFront$$ResizeFront

\\input{$$AbsOrRelPathMaster$$Basename.pdftex_t}
$$ResizeBack$$RotateBack"

UpdateFormat pdftex
UpdateResult "$$AbsPath$$Basename.pdftex_t"
Requirement "graphicx"
ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pdftex_t"
ReferencedFile latex "$$AbsPath$$Basename.pdf"
FormatEnd
Format Ascii
Product "$$Contents(\"$$AbsPath$$Basename.asc\")"
UpdateFormat asciixfig
UpdateResult "$$AbsPath$$Basename.asc"
FormatEnd
Format DocBook
Product "<graphic fileref=\"$$AbsOrRelPathMaster$$Basename.eps\">

</graphic>"
UpdateFormat eps
UpdateResult "$$AbsPath$$Basename.eps"
ReferencedFile docbook "$$AbsPath$$Basename.eps"
ReferencedFile docbook-xml "$$AbsPath$$Basename.eps"
FormatEnd
Product "[XFig: $$FName]"
FormatEnd
TemplateEnd

As you can see, the template is enclosed in Template . . . TemplateEnd. It contains
a header specifying some general settings and, for each supported primary document
file format, a section Format . . . FormatEnd.

6.2.1 The template header
AutomaticProduction true|false Whether the file represented by the template

must be generated by LYX. This command must occur exactly once.

FileFilter <pattern> A glob pattern that is used in the file dialog to filter out
the desired files. If there is more than one possible file extension (e. g. tgif
has .obj and .tgo), use something like "*.{obj,tgo}". This command must
occur exactly once.

GuiName <guiname> The text that is displayed on the button. This command must
occur exactly once.

53

6 Including External Material

HelpText <text> HelpTextEnd The help text that is used in the External dialog.
Provide enough information to explain to the user just what the template can
provide him with. This command must occur exactly once.

InputFormat <format> The file format of the original file. This must be the name
of a format that is known to LYX (see section 3.1). Use “*” if the template can
handle original files of more than one format. LYX will attempt to interrogate
the file itself in order to deduce its format in this case. This command must
occur exactly once.

Template <id> A unique name for the template. It must not contain substitution
macros (see below).

Transform Rotate|Resize|Clip|Extra This command specifies which transfor-
mations are supported by this template. It may occur zero or more times.
This command enables the corresponding tabs in the external dialog. Each
Transform command must have either a corresponding TransformCommand or
a TransformOption command in the Format section. Otherwise the transfor-
mation will not be supported by that format.

6.2.2 The Format section
Format LATEX|PDFLATEX|PlainText|DocBook The primary document file format that

this format definition is for. Not every template has a sensible representation
in all document file formats. Please define nevertheless a Format section for all
templates. Use a dummy text when no representation is available. Then you
can at least see a reference to the external material in the exported document.

Option <name> <value> This command defines an additional macro $$<name> for
substitution in Product. <value> itself may contain substitution macros. The
advantage over using <value> directly in Product is that the substituted value
of $$<name> is sanitized so that it is a valid optional argument in the document
format. This command may occur zero or more times.

Product <text> The text that is inserted in the exported document. This is actually
the most important command and can be quite complex. This command must
occur exactly once.

Preamble <name> This command specifies a preamble snippet that will be included
in the LATEX preamble. It has to be defined using PreambleDef . . . PreambleDefEnd.
This command may occur zero or more times.

ReferencedFile <format> <filename> This command denotes files that are cre-
ated by the conversion process and are needed for a particular export format. If
the filename is relative, it is interpreted relative to the master document. This
command may be given zero or more times.

54

6.3 The substitution mechanism

Requirement <package> The name of a required LATEX package. The package is
included via \usepackage{} in the LATEX preamble. This command may occur
zero or more times.

TransformCommand Rotate RotationLatexCommand This command specifies that
the built in LATEX command should be used for rotation. This command may
occur once or not at all.

TransformCommand Resize ResizeLatexCommand This command specifies that the
built in LATEX command should be used for resizing. This command may occur
once or not at all.

TransformOption Rotate RotationLatexOption This command specifies that ro-
tation is done via an optional argument. This command may occur once or not
at all.

TransformOption Resize ResizeLatexOption This command specifies that resiz-
ing is done via an optional argument. This command may occur once or not at
all.

TransformOption Clip ClipLatexOption This command specifies that clipping is
done via an optional argument. This command may occur once or not at all.

TransformOption Extra ExtraLatexOption This command specifies that an ex-
tra optional argument is used. This command may occur once or not at all.

UpdateFormat <format> The file format of the converted file. This must be the
name of a format that is known to LYX (see the Tools .Preferences .File Han-
dling .File Format dialog). This command must occur exactly once.

UpdateResult <filename> The file name of the converted file. The file name must
be absolute. This command must occur exactly once.

6.2.3 Preamble definitions
The external template configuration file may contain additional preamble definitions
enclosed by PreambleDef . . . PreambleDefEnd. They can be used by the templates
in the Format section.

6.3 The substitution mechanism
When the external material facility invokes an external program, it is done on the
basis of a command defined in the template configuration file. These commands can
contain various macros that are expanded before execution. Execution always take
place in the directory of the containing document.

55

6 Including External Material

Also, whenever external material is to be displayed, the name will be produced by
the substitution mechanism, and most other commands in the template definition
support substitution as well.
The available macros are the following:

$$AbsOrRelPathMaster The file path, absolute or relative to the master LYX doc-
ument.

$$AbsOrRelPathParent The file path, absolute or relative to the LYX document.

$$AbsPath The absolute file path.

$$Basename The filename without path and without the extension.

$$Contents(“filename.ext”) This macro will expand to the contents of the file
with the name filename.ext.

$$Extension The file extension (including the dot).

$$FName The filename of the file specified in the external material dialog. This is
either an absolute name, or it is relative to the LYX document.

$$FPath The path part of $$FName (absolute name or relative to the LYX document).

$$RelPathMaster The file path, relative to the master LYX document.

$$RelPathParent The file path, relative to the LYX document.

$$Sysdir This macro will expand to the absolute path of the system directory. This
is typically used to point to the various helper scripts that are bundled with
LYX.

$$Tempname A name and full path to a temporary file which will be automatically
deleted whenever the containing document is closed, or the external material
insertion deleted.

All path macros contain a trailing directory separator, so you can construct e. g. the
absolute filename with $$AbsPath$$Basename$$Extension.
The macros above are substituted in all commands unless otherwise noted. The

command Product supports additionally the following substitutions if they are en-
abled by the Transform and TransformCommand commands:

$$ResizeFront The front part of the resize command.

$$ResizeBack The back part of the resize command.

$$RotateFront The front part of the rotation command.

$$RotateBack The back part of the rotation command.

56

6.4 Security discussion

The value string of the Option command supports additionally the following substi-
tutions if they are enabled by the Transform and TransformOption commands:

$$Clip The clip option.

$$Extra The extra option.

$$Resize The resize option.

$$Rotate The rotation option.

You may ask why there are so many path macros. There are mainly two reasons:

1. Relative and absolute file names should remain relative or absolute, respec-
tively. Users may have reasons to prefer either form. Relative names are useful
for portable documents that should work on different machines, for example.
Absolute names may be required by some programs.

2. LATEX treats relative file names differently than LYX and other programs in
nested included files. For LYX, a relative file name is always relative to the doc-
ument that contains the file name. For LATEX, it is always relative to the master
document. These two definitions are identical if you have only one document,
but differ if you have a master document that includes part documents. That
means that relative filenames must be transformed when presented to LATEX.
Fortunately LYX does this automatically for you if you choose the right macros.

So which path macro should be used in new template definitions? The rule is not
difficult:

• Use $$AbsPath if an absolute path is required.

• Use $$AbsOrRelPathMaster if the substituted string is some kind of LATEX
input.

• Else use $$AbsOrRelPathParent in order to preserve the user’s choice.

There are special cases where this rule does not work and e. g. relative names are
needed, but normally it will work just fine. One example for such a case is the
command ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pstex_t"
in the XFig template above: We can’t use the absolute name because the copier for
.pstex_t files needs the relative name in order to rewrite the file content.

6.4 Security discussion
The external material feature interfaces with a lot of external programs and does so
automatically, so we have to consider the security implications of this. In particular,
since you have the option of including your own filenames and/or parameter strings

57

6 Including External Material

and those are expanded into a command, it seems that it would be possible to create a
malicious document which executes arbitrary commands when a user views or prints
the document. This is something we definitely want to avoid.
However, since the external program commands are specified in the template con-

figuration file only, there are no security issues if LYX is properly configured with
safe templates only. This is so because the external programs are invoked with the
execvp-system call rather than the system system-call, so it’s not possible to execute
arbitrary commands from the filename or parameter section via the shell.
This also implies that you are restricted in what command strings you can use in

the external material templates. In particular, pipes and redirection are not readily
available. This has to be so if LYX should remain safe. If you want to use some of
the shell features, you should write a safe script to do this in a controlled manner,
and then invoke the script from the command string.
It is possible to design a template that interacts directly with the shell, but since

this would allow a malicious user to execute arbitrary commands by writing clever
filenames and/or parameters, we generally recommend that you only use safe scripts
that work with the execvp system call in a controlled manner. Of course, for use in
a controlled environment, it can be tempting to just fall back to use ordinary shell
scripts. If you do so, be aware that you will provide an easily exploitable security
hole in your system. Of course it stands to reason that such unsafe templates will
never be included in the standard LYX distribution, although we do encourage people
to submit new templates in the open source tradition. But LYX as shipped from the
official distribution channels will never have unsafe templates.
Including external material provides a lot of power, and you have to be careful not

to introduce security hazards with this power. A subtle error in a single line in an
innocent looking script can open the door to huge security problems. So if you do not
fully understand the issues, we recommend that you consult a knowledgeable security
professional or the LYX development team if you have any questions about whether
a given template is safe or not. And do this before you use it in an uncontrolled
environment.

58

	Contents
	1 Introduction
	2 LyX configuration files
	2.1 What's in LyXDir?
	2.1.1 Automatically generated files
	2.1.2 Directories
	2.1.3 Files you don't want to modify
	2.1.4 Other files needing a line or two...

	2.2 Your local configuration directory
	2.3 Running LyX with multiple configurations

	3 The Preferences dialog
	3.1 Formats
	3.2 Copiers
	3.3 Converters

	4 Internationalizing LyX
	4.1 Translating LyX
	4.1.1 Translating the graphical user interface (text messages).
	4.1.1.1 Ambiguous messages

	4.1.2 Translating the documentation.

	4.2 International Keymap Stuff
	4.2.1 The .kmap File
	4.2.2 The .cdef File
	4.2.3 Dead Keys
	4.2.4 Saving your Language Configuration

	5 Installing New Document Classes
	5.1 Installing new LaTeX files
	5.2 Types of layout files
	5.2.1 Layout modules
	5.2.1.1 Local Layout

	5.2.2 Layout for .sty files
	5.2.3 Layout for .cls files
	5.2.4 Creating templates
	5.2.5 Upgrading old layout files

	5.3 The layout file format
	5.3.1 The document class declaration
	5.3.2 The Module declaration
	5.3.3 Format number
	5.3.4 General text class parameters
	5.3.5 ClassOptions section
	5.3.6 Paragraph styles
	5.3.7 Internationalization of Paragraph Styles
	5.3.8 Floats
	5.3.9 Flex insets and InsetLayout
	5.3.10 Counters
	5.3.11 Font description
	5.3.12 Citation format description

	5.4 Tags for XHTML output
	5.4.1 Paragraph styles
	5.4.2 InsetLayout XHTML
	5.4.3 Float XHTML
	5.4.4 Bibliography formatting
	5.4.5 LyX-generated CSS

	6 Including External Material
	6.1 How does it work?
	6.2 The external template configuration file
	6.2.1 The template header
	6.2.2 The Format section
	6.2.3 Preamble definitions

	6.3 The substitution mechanism
	6.4 Security discussion

