Customizing LyX: Features for the
Advanced User

by the LyX Team*

Version 1.6.x

August 14, 2010

*If you have comments or error corrections, please send them to the LyX Documentation
mailing list, lyx-docs@lists.lyx.org. Include “[Customization]” in the subject header,
and please cc the current maintainer of this file, Richard Heck <rgheck@comcast.net>.

mailto:lyx-docs@lists.lyx.org

Contents

Introduction

LyX configuration files

2.1.1 Automatically generated files
2.1.2 Directories
2.1.3 Files you don’t want to modify

2.1.4 Other files needing a line or two...

Your local configuration directory . .

2.3 Running IyX with multiple configurations

1
2
2.1
2.2
3
3.1
3.2
3.3
4
4.1
4.2
5
5.1
5.2
5.3

The Preferences dialog

Formats
Copiers.
Converters

Internationalizing LyX

Translating Iy X

4.1.1 Translating the graphical user interface (text messages).

4.1.1.1 Ambiguous messages
4.1.2 Translating the documentation.
International Keymap Stuff
4.2.1 The kmap File
4.2.2 The .cdef File
4.2.3 Dead Keys.

4.2.4 Saving your Language Configuration

Installing New Document Classes

Installing a new ITEX package . . .
Layouts
5.2.1 Layout modules

5.2.2 Supporting new document classes

5.2.3 A layout for a sty file
5.2.4 Layout foraclsfile
Declaring a new text class
5.3.1 File format
5.3.2 General text class parameters

—

UL O O i = W W W

00~~~

11

11
12
12
13
14
15
16
16

17
17
18
19
20
20
21
21
23
23

Contents

ii

5.3.3 ClassOptions section 25
5.3.4 Paragraph Styles L. 26
5.3.50 Floatso 31
5.3.6 Flex insets and InsetLayout 32
53.7 Counters 34
5.3.8 Font descriptiono o 35
5.3.9 Upgrading old layout files 35
5.4 Creating Templates 36
Including External Material 37
6.1 How does it work? o 37
6.2 The external template configuration file. 38
6.2.1 The template header, 39
6.2.2 The Format section 40
6.2.3 Preamble definitions 41
6.3 The substitution mechanism 41
6.4 Security discussion Lo Lo 43

1 Introduction

This manual covers the customization features present in IyX. In it, we discuss
issues like keyboard shortcuts, screen previewing options, printer options, sending
commands to LyX via the IyyX Server, internationalization, installing new ETEX
classes and LyX layouts, etc. We can’t possibly hope to touch on everything you can
change—our developers add new features faster than we can document them—but
we will explain the most common customizations and hopefully point you in the right
direction for some of the more obscure ones.

1 Introduction

2 LyX configuration files

This chapter aims to help you to find your way through the IyX configuration files.
Before continuing to read this chapter, you should find out where your [yX library
and user directories are by using Help>About LyX. The library directory is the place
where LyX places its system-wide configuration files; the user directory is where you
can place your modified versions. We will call the former IyXDir and the latter UserDir
in the remainder of this document.

2.1 What’s in LyXDir?

LyXDir and its sub-directories contain a number of files and that can be used to
customize Ly X’s behavior. You can change many of these files from within [yX itself
through the Toolst Preferences dialog. Most customization that you will want to do
in LyX is possible through this dialog. However, many other inner aspects of [y X can
be customized by modifying the files in IyXDir. These files fall in different categories,
described in the following subsections.

2.1.1 Automatically generated files

The files, which are to be found in UserDir, are generated when you configure LyX.
They contain various default values that are guessed by inspection. In general, it is
not a good idea to modify them, since they might be overwritten at any time.

lyxrc.defaults contains defaults for various commands.

packages.lst contains the list of packages that have been recognized by LyX. It
is currently unused by the IyX program itself, but the information ex-
tracted, and more, is made available with Help> IETEX Configuration.

textclass.lst the list of text classes that have been found in your layout/ directo-
ries, along with the associated IXTEX document class and their description.

lyxmodules.lst the list of layout modules found in your layout/ directories
xfiles.1st lists of various sorts of IXTEX-related files found on your system

doc/EXConfig.lyx is automatically generated during configuration from the file
EXConfig.lyx.in. It contains information on your KTEX configuration.

2 LyX configuration files

2.1.2 Directories

These directories are duplicated between LyXDir and UserDir. If a particular files
exists in both places, the one in UserDir will be used.

bind/ this directory contains files with the extension .bind that define the key-
bindings used in LyX. If there exists an internationalized version of the
bind file named $LANG_xxx.bind, that will be used first.

clipart/ contains graphics files that can be included in documents.

doc/ contains IyX documentation files (including the one you are currently
reading). The file EXConfig.lyx deserves special attention, as noted
above. The internationalized help docs are in subdirectories doc/xx where
“xx” is the ISO language code. See chapter 4 for details.

examples/ contains example files that explain how to use some features. In the file
browser, press the Examples button to get there.

images/ contains image files that are used by the Document dialog. In addition,
it also contains the individual icons used in the toolbar and the banners
that can be shown when IyX is launched.

kbd/ contains keyboard keymapping files. See Chapter 4.2 for details.
layouts/ contains the text class and module files described in Chapter 5.

lyx2lyx contains the 1lyx2lyx Python scripts used to convert between LyX ver-
sions. These can be run from the command line if, say, you want to
batch-convert files.

scripts/ contains some files that demonstrate the capabilities of the External Tem-
plate feature. Also contains some scripts used by LyX itself.

templates/ contains the standard LyX template files described in Chapter 5.4.

ui/ contains files with the extension .ui that define the user interface to IyX.
That is, the files define which items appear in which menus and the items
appearing on the toolbar.

2.1.3 Files you don’t want to modify

These files are used internally by LyX and you generally do not need to modify them
unless you are a developer.

CREDITS this file contains the list of IxX developers. The contents are displayed
with the menu entry Help>About LyX.

2.2 Your local configuration directory

chkconfig.ltx this is a IXTEX script used during the configuration process. Do not
run directly.

configure.py this is the script that is used to re-configure LyX. It creates configu-
ration files in the directory it was run from.

2.1.4 Otbher files needing a line or two...

encodings this contains tables describing how different character encodings can be
mapped to Unicode

external templates this file contains the templates available to the new Exter-
nal Template feature.

languages this file contains a list of all the languages currently supported by LyX.

2.2 Your local configuration directory

Even if you are using LyX as an unprivileged user, you might want to change IyX
configuration for your own use. The UserDir directory contains all your personal con-
figuration files. This is the directory described as “user directory” in Help>About LyX.
This directory is used as a mirror of IyXDir, which means that every file in UserDir
is a replacement for the corresponding file in IyXDir. Any configuration file described
in the above sections can be placed either in the system-wide directory, in which case
it will affect all users, or in your local directory for your own use.
To make things clearer, let’s provide a few examples:

e The preferences set in the Tools > Preferences dialog are saved to a file preferences
in UserDir.

e When you reconfigure using Tools> Reconfigure, LyX runs the configure.py
script, and the resulting files are written in your local configuration directory.
This means that any additional text class file that you might have added in
UserDir/layouts will be added to the list of classes in the Document > Settings
dialog.

e If you get some updated documentation from LyX ftp site and cannot install
it because you do not have sysadmin rights on your system, you can just copy
the files in UserDir/doc/ and the items in the Help menu will open them!

2.3 Running LyX with multiple configurations

The configuration freedom of the local configuration directory may not suffice if you
want to have more than one configuration at your disposal. For example, you may
want to be use different key bindings or printer settings at different times. You can

2 LyX configuration files

achieve this by having several such directories. You then specify which directory to
use at run-time.

Invoking LyX with the command line switch —userdir <some directory> instructs
the program to read the configuration from that directory, and not from the default
directory. (You can determine the default directory by running IxX without the
-userdir switch.) If the specified directory does not exist, [yX offers to create it for
you, just like it does for the default directory on the first time you run the program.
You can modify the configuration options in this additional user directory exactly
as you would for the default directory. These directories are completely independent
(but read on). Note that setting the environment variable LYX_USERDIR_VER to some
value has exactly the same effect.

Having several configurations also requires more maintenance: if you want to add
a new layout to NewUserDir/layouts which you want available from all your config-
urations, you must add it to each directory separately. You can avoid this with the
following trick: after IiyX creates the additional directory, most of the subdirectories
(see above) are empty. If you want the new configuration to mirror an existing one,
replace the empty subdirectory with a symbolic link to the matching subdirectory
in the existing configuration. Take care with the doc/ subdirectory, however, since
it contains a file written by the configuration script (also accessible through Tools>
Reconfigure) which is configuration-specific.

3 The Preferences dialog

All options of the preferences dialog are described in the Appendix The Preferences
Dialog in the User’s Guide. For some options you might find here more details.

3.1 Formats

The first step is to define your file formats if they are not already defined. To do
so, open the Tools> Preferences dialog. Under File Handling> File formats press the
New... button to define your new format. The Format field contains the name used
to identify the format in the GUI. The Short Name is used to identify the format
internally. You will also need to enter a file extension. These are all required. The
optional Shortcut field is used to provide a keyboard shortcut on the menus. (For
example, pressing Alt-V D will ViewrDVI.)

A Format can have a Viewer and an Editor associated with it. For example, you
might want to use Ghostview to view PostScript files. You can enter the command
needed to start the program in the corresponding fields. In defining this command,
you can use the four variables listed in the next section. The viewer is launched when
you view an image in IxyX or use the View menu. The editor is for example launched
when you right-click on an image and choose Edit externally in the appearing context
menu.

The Document format option tells LyX that a format is suitable for document
export. If this is set and if a suitable conversion route exists (see sec. 3.3), the format
will appear in the Filer> Export menu. The format will also appear in the View menu
if a viewer is specified for the format. Pure image formats, such as png, should not
use this option. Formats that can both represent vector graphics and documents like
pdf should use it.

The option Vector graphics format tells LyX that a format can contain vector graph-
ics. This information is used to determine the target format of included graphics for
pdflatex export. Included graphics may need to be converted to either pdf, png, or
jpg, since pdflatex cannot handle other image formats. If an included graphic is not
already in pdf, png, or jpg format, it is converted to pdf if the vector format option
is set, and otherwise to png.

3.2 Copiers

Since all conversions from one format to another take place in LyX’s temporary
directory, it is sometimes necessary to modify a file before copying it to the temporary

3 The Preferences dialog

directory in order that the conversion may be performed.! This is done by a Copier:
It copies a file to (or from) the temporary directory and may modify it in the process.
The definitions of the copiers may use four variables:

$3s The LyX system directory (e.g. /usr/share/lyx).
$$i The input file

$$0 The output file

$31 The ‘KTEX name’

The latter should be the filename as it would be used in a WTEX’s \include command.
It is relevant only when exporting files suitable for such inclusion.

Copiers can be used to do almost anything with output files. For example, suppose
you want generated pdf files to be copied to a special directory, /home/you/pdf/.
Then you could write a shell script such as this one:

#!/bin /bash

FROMFILE=$1

TOFILE=‘basename $2°

¢p $FROMFILE /home/you/pdf/$TOFILE

Save it in your local Ly X directory—say, /home/you/.lyx/scripts/pdfcopier.sh—and
make it executable, if you need to do so on your platform. Then, in the Tools>
Preferences dialog, select under File Handlingr>File formats the PDF(pdflatex) for-
mat—or one of the other pdf formats—and enter pdfcopier.sh $$i $$o into the
Copier field.

Copiers are used by IxX in various of its own conversions. For example, if appro-
priate programs are found, LyX will automatically install copiers for the HTML and
HTML (MS Word) formats. When these formats are exported, the copier sees that
not just the main HTML file but various associated files (style files, images, etc.) are
also copied. All these files are written to a subdirectory of the directory in which the
original IxX file was found.?

3.3 Converters

You can define your own Converters to convert files between different formats. This
is done in the Tools Preferences> File Handling> Converters dialog.

1For example, the file may refer to other files—images, for example—using relative file names, and
these may become invalid when the file is copied to the temporary directory.

2This copier can be customized. The optional “-e” argument takes a comma-separated list of
extensions to be copied; if it is omitted, all files will be copied. The “-t” argument determines
the extension added to the generated directory. By default, it is “LyXconv”, so HTML generated
from /path/to/filename.lyx will end up in /path/to/filename.html.LyXconv.

3.3 Converters

To define a new converter, select the From format and To format from the drop-
down lists, enter the command needed for the conversion, and then press the Add
button. Several variables can be used in the definition of converters:

$$s The LyX system directory

$81 The input file

$$0 The output file

$$b The base filename of the input file (i. g., without the extension)

$$p The path to the input file

$$r The path to the original input file (this is different from $$p when a chain

of converters is called).
In the Extra Flag field you can enter the following flags, separated by commas:

latex This converter runs some form of KTEX. This will make IyX’s BETEX
error logs available.

needaux Needs the IXTEX .aux file for the conversion.
xml Output is XML.

The following three flags are not really flags at all because they take an argument in
the key = value format:

parselog Ifset, the converter’s standard error will be redirected to a file infile. out,
and the script given as argument will be run as: script < infile.out
> infile.log. The argument may contain 3s.

resultdir The name of the directory in which the converter will dump the generated
files. IyyX will not create this directory, and it does not copy anything into
it, though it will copy this directory to the destination. The argument
may contain $$b, which will be replaced by the base name of the input
and output files, respectively, when the directory is copied.
Note that resultdir and usetempdir make no sense together. The latter
will be ignored if the former is given.

resultfile Determines the output file name and may, contain $$b. Sensible only
with resultdir and optional even then; if not given, it defaults to ‘index’.

None of these last three are presently used in any of the converters that are installed
with LyX.

You do not have to define converters for all formats between which you want to
convert. For example, you will note that there is no ‘I X to PostScript’ converter,
but LyX will export PostScript. It does so by first creating a IXTEX file (no converter

3 The Preferences dialog

needs to be defined for this) which is then converted to DVI using the ‘BTEX to DVI’
converter, and finally converting the resulting DVT file to PostScript. IyX finds such
‘chains’ of converters automatically, and it will always choose the shortest possible
chain. You can, though, still define multiple conversion methods between file formats.
For example, the standard [yX configuration provides three ways to convert IXTEX
to PDF: Directly, using pdflatex; via (DVI and) PostScript, using ps2pdf; or via DVI,
using dvipdfm. To define such alternate chains, you must define multiple target ‘file
formats’, as described in section 3.1. For example, in the standard configuration, the
formats named pdf, pdf2, and pdf3 are defined, all of which share the extension .pdf,
and which correspond to the conversion methods just mentioned.

10

4 Internationalizing LyX

LyX supports using a translated interface. Last time we checked, IiyX provided text in
thirty languages. The language of choice is called your locale. (For further reading on
locale settings, see also the documentation for locale that comes with your operating
system. For Linux, the manual page for locale(5) could be a good place to start).

Notice that these translations will work, but do contain a few flaws. In particular,
all dialogs have been designed with the English text in mind, which means that some
of the translated text will be too large to fit within the space allocated. This is only
a display problem and will not cause any harm. Also, you will find that some of the
translations do not define shortcut keys for everything. Sometimes, there are simply
not enough free letters to do it. Other times, the translator just hasn’t got around
to doing it yet. Our localization team, which you may wish to join,! will of course
try to fix these shortcomings in future versions of LyX.

4.1 Translating LyX

4.1.1 Translating the graphical user interface (text messages).

LyX uses the GNU gettext library to handle the internationalization of the interface.
To have LyX speak your favorite language in all menus and dialogs, you need a po-file
for that language. When this is available, you’ll have to generate a mo-file from it and
install the mo-file. The process of doing all of this is explained in the documentation
for GNU gettext. It is possible to do this just for yourself, but if you're going to
do it, you might as well share the results of your labors with the rest of the IyX
community. Send a message to the [y X developers’ list for more information about
how to proceed.
In short, this is what you should do (xx denotes the language code):

e Check out the IiyX source code. (See the information on the web.)

e Copy the file 1yx.pot to the folder of the *x.po files. Then rename it to
xx.po. (If 1lyx.pot doesn’t exist anywhere, it can be remade with the console
command make lyx.pot in that directory, or you can use an existing po-file
for some other language as a template).

'If you are a fluent speaker of a language other than English, joining these teams is a great way
to give back to the IyX community!

11

http://www.lyx.org/devel/cvs.php

4 Internationalizing LyX

e Edit xx.po.? For some menu- and widget-labels, there are also shortcut keys
that should be translated. Those keys are marked after a ‘|, and should be
translated according to the words and phrases of the language. You should
also fill also out the information at the beginning of the new po-file with your
email-address, etc., so people know where to reach you with suggestions and
entertaining flames.

If you are just doing this on your own, then:
e Generate xx.mo. This can be done with msgfmt -o xx.mo < xx.po.

e Copy the mo-file to your locale-tree, at the correct directory for application mes-
sages for the language xx, and under the name lyx.mo (e.g. /usr/local/share/locale/xx/L

As said, however, it would be best if the new po-file could be added to the IyX
distribution, so others can use it. Adding it involves making additional changes to

LyX. So send an email to the developers’ mailing list if you're interested in doing
that.

4.1.1.1 Ambiguous messages

Sometimes it turns out that one English message needs to be translated into different
messages in the target language. One example is the message To which has the Ger-
man translation Nach or Bis, depending upon exactly what the English “to” means.
GNU gettext does not handle such ambiguous translations. Therefore you have to
add some context information to the message: Instead of To it becomes To[[as in
’From format x to format y’]] and To[[as in ’From page x to page y’l].
Now the two occurrences of To are different for gettext and can be translated cor-
rectly to Nach and Bis, respectively.

Of course the context information needs to be stripped off the original message
when no translation is used. Therefore you have to put it in double square brackets
at the end of the message (see the example above). The translation mechanism of
LyX ensures that everything in double square brackets at the end of messages is
removed before displaying the message.

4.1.2 Translating the documentation.

The online documentation (in the Help-menu) can (and should!) be translated. If
there are translated versions of the documentation available® and the locale is set ac-
cordingly, these will be used automagically by Iy X. LyX looks for translated versions
as LyXDir/doc/xx/DocName.lyx, where xx is the code for the language currently in

2This is just a text file, so it can be edited in any text editor. But there are also specialized
programs that support such editing, such as Poedit (for all platforms) or KBabel (for KDE).
Emacs contains a ‘mode’ for editing po files, as well.

3As of March 2008, at least some of the documents have been translated into fourteen languages,
with the Tutorial available in a few more.

12

4.2 International Keymap Stuff

use. If there are no translated documents, the default English versions will be dis-
played. Note that the translated versions must have the same filenames (DocName
above) as the original. If you feel up to translating the documentation (an excellent
way to proof-read the original documentation by the way!), there are a few things
you should do right away:

e Check out the documentation translation web page at http://www.lyx.org/Translation.
That way, you can find out which (if any) documents have already been trans-
lated into your language. You can also find out who (if anyone) is organizing the
effort to translate the documentation into your language. If no one is organizing
the effort, please let us know that you're interested.

Once you get to actually translating, here’s a few hints for you that may save you
trouble:

e Join the documentation team! There is information on how to do that in
Intro.lyx (Help>Introduction), which by the way is the first document you
should translate.

e Learn the typographic conventions for the language you are translating to. Ty-
pography is an ancient art and over the centuries, a great variety of conventions
have developed throughout different parts of the world. Also study the profes-
sional terminology amongst typographers in your country. Inventing your own
terminology will only confuse the users. (Warning! Typography is addictive!)

e Make a copy of the document. This will be your working copy. You can use
this as your personal translated help-file by placing it in your UserDir/doc/xx/
directory.

e Sometimes the original document (from the IyX-team) will be updated. Use
the source viewer at http://www.lyx.org/trac/timeline to see what has been
changed. That way you can easily see which parts of the translated document
need to be updated.

If you ever find an error in the original document, fix it and notify the rest of the
documentation team of the changes! (You didn’t forget to join the documentation
team, did you?)

4.2 International Keymap Stuff

The next two sections describe the .kmap and .cdef file syntax in detail. These

sections should help you design your own key map if the ones provided do not meet
your needs.

13

http://www.lyx.org/Translation
http://www.lyx.org/trac/timeline

4 Internationalizing LyX

4.2.1 The .kmap File

A kmap file maps keystrokes to characters or strings. As the name suggests, it sets
a keyboard mapping. The .kmap file keywords kmap, kmod, ksmod, and kcomb are
described in this section.

kmap Map a character to a string
\kmap char string

This will map char to string. Note that in string, the double-quote (") and the
backslash (\) must be escaped with a preceding backslash ().

An example of a kmap statement to cause the symbol / to be output for the
keystroke & is:

\kmap & /
kmod Specify an accent character
\kmod char accent allowed

This will make the character char be an accent on the allowed character(s). This is
the dead key* mechanism.

If you hit char and then another key not in allowed, you will get a char followed
by the other, not allowed key, as output. Note that a Backspace cancels a dead key,
so if you hit char Backspace, the cursor will not go one position backwards but will
instead cancel the effect that char might have had on the next keystroke.

The following example specifies that the character ’ is to be an acute accent, allowed
on the characters a, e, i, 0, u, A, E, I, O, and U:

\kmod ’ acute aeiouAEIQU
ksmod Specify an exception to the accent character
\kxmod accent char result

This defines an exception for accent on char. The accent must have been assigned a
keystroke with a previous \kmod declaration and char must not belong in the allowed
set of accent. When you enter the accent char sequence, result is produced. If such
a declaration does not exist in the .kmap file and you enter accent char, you get
accent__key char where accent_key is the first argument of the \kmod declaration.
The following command produces causes éi to be produced when you enter acute-i

('i):

4The term dead key refers to a key that does not produce a character by itself, but when followed
with another key, produces the desired accent character. For example, a German character with
an umlaut like @ can be produced in this manner.

14

4.2 International Keymap Stuff
\kxmod acute i "\\’{\\i}"
kcomb Combine two accent characters
\kcomb accentl accent? allowed

This one is getting pretty esoteric. It allows you to combine the effect of accent! and
accent? (in that order!) on allowed chars. The keystrokes for accent! and accent2
must have been set with a \kmod command at a previous point in the file.

Consider this example from the greek.kmap file:

\kmod ; acute aeioyvhAEIOYVH \kmod : umlaut iyIY \kcomb acute umlaut iyIY

This allows you to press ;:i and get the effect of \’{\"{i}}. A backspace in this case
cancels the last dead key, so if you press ;: Backspace i you get \’{i}.

4.2.2 The .cdef File

After the .kmap mapping is performed, a .cdef file maps the strings that the symbols
generate to characters in the current font. The IxyX distribution currently includes
at least the 1s08859-1.cdef and is08859-2. cdef files.

In general the .cdef file is a sequence of declarations of the form
char_index_in_set string

For example, in order to map \'{e} to the corresponding character in the iso-8859-1
set (233), the following declaration is used

233 n\\) {e}u

with \ and " being escaped in string. Note that the same character can apply to
more than one string. In the is0-8859-7.cdef file you have

192 "\\V{\\\"{i}}"
192 "\\\"{\\"{i}}"

If IyX cannot find a mapping for the string produced by the keystroke or a deadkey
sequence, it will check if it looks like an accented char and try to draw an accent over
the character on screen.

15

4 Internationalizing LyX

4.2.3 Dead Keys

There is a second way to add support for international characters through so-called
dead-keys. A dead-key works in combination with a letter to produce an accented
character. Here, we’ll explain how to create a really simple dead-key to illustrate how
they work.

Suppose you happen to need the circumflex character, “*”. You could bind the -
key [a.k.a. Shift-6] to the yX command accent-circumflex in your lyxrc file. Now,
whenever you type the ~-key followed by a letter, that letter will have a circumflex
accent on it. For example, the sequence “"e” produces the letter: “&”. If you tried
to type “"t”, however, IxyX will complain with a beep, since a “t” never takes a
circumflex accent. Hitting Space after a dead-key produces the bare-accent. Please
note this last point! If you bind a key to a dead-key, you’ll need to rebind the
character on that key to yet another key. Binding the ,-key to a cedilla is a bad idea,
since you’ll only get cedillas instead of commas.

One common way to bind dead-keys is to use Meta-, Ctrl-, and Shift- in combination
with an accent, like or or “7 Another way involves using xmodmap and
xkeycaps to set up the special Mode_Switch key. The Mode_Switch acts in some
ways just like Shift and permits you to bind keys to accented characters. You can
also turn keys into dead-keys by binding them to something like usldead cedilla
and then binding this symbolic key to the corresponding IyX command.” You can
make just about anything into the Mode Switch key: One of the Ctrl- keys, a spare
function key, etc. As for the IyX commands that produce accents, check the entry
for accent-acute in the Reference Manual. You'll find the complete list there.

[W
1

4.2.4 Saving your Language Configuration

You can edit your preferences so that your desired language environment is automat-
ically configured when IxyX starts up, via the Edit> Preferences dialog.

5Note from JOHN WEISS: This is exactly what I do in my ~/.1yx/lyxrc and my ~/.xmodmap files.
I have my Scroll Lock key set up as Mode_Shift and a bunch of these “usldead_x” symbolic
keys bound such things as Scroll Lock-" and Scroll Lock-~. This is how I produce my accented
characters.

16

5 Installing New Document Classes,
Layouts, and Templates

In this chapter, we describe the procedures for creating and installing new LyX lay-
out and template files, as well as offer a refresher on correctly installing new IXTEX
document classes. Some definitions: a document class is a KTEX file (usually ending
in .cls or .sty) that describes the format of a document such as an article, report,
journal preprint, etc, and all the commands needed to realize that format. A layout
file is a Ly X file that corresponds to a IfTEX document class and that tells LyX how
to “draw” things on the screen to make the display look something like the final
printed page. More precisely, a layout file describes a “text class” which is the inter-
nal construct IyX uses to render the screen display. “Layout” and “text class” can be
used somewhat interchangeably, but it is better to refer to the file as the layout, and
the thing living in [yX’s memory as the text class. A template file is simply a IxX
document that contains a set of predefined entries for a given document class—entries
that are generally required for that class. Templates are especially useful for things
like journal manuscripts that are to be submitted electronically.

5.1 Installing a new BTEX package

Some installations may not include a IXTEX package that you would like to use within
LyX. For example, you might need FoilTEX, a package for preparing slides or view-
graphs for overhead projectors. Modern KTEX distributions like TEXLive (2008 or
newer) or MiKTEX provide a user interface for that. For example on MiKTEX you
start its program “Browse Packages” to get a list of available packages. To install
one, right click on it or use the installing toolbar button. When the package you
want to install is not in the list, but you have it in form of a .cls or .sty-file, then
copy these files to a subfolder of your HTEX distribution, for example to the folder
~\tex\latex. Then update the file name database of your IXTEX-distribution. For
example on MiKTEX this is done by pressing the button Refresh FNDB that you find
in MiKTEX’s “Settings” program. In both cases you need afterwards to reconfigure
LyX using the menu Tools> Reconfigure and then to restart IyX.

If your BTEX distribution doesn’t provide a user interface, then you can follow
these steps by using a UNIX/Linux console.

1. Get the package from CTAN or wherever.

2. You can install this package in several different places. If you want it to be

17

http://www.ctan.org/

5 Installing New Document Classes

available for all users on your system, then you should install it in your ‘local’
TEX tree; if you want (or need) it to be available just for you, then you can
install it in your own ‘user’ TEX tree. Where these should be created, if they
do not already exist, depends upon the details of your system. To find out,
look in the file texmf.cnf.! The location of the ‘local’ TEX tree is defined by
TEXMFLOCAL; this is usually somewhere like /usr/local/share/texmf/. The
‘user’ TEX tree is defined by TEXMFHOME and is commonly at $HOME/texmf/.
(If these variables are not predefined, you can define them.) You’ll probably
need root permissions to create or modify the ‘local’ tree; but your ‘user’ tree
shouldn’t have such limitations.

3. Make sure TEXMF includes the TEXMFLOCAL and TEXMFHOME variables; e. g.
TEXMF = {$TEXMFHOME, ! ' $TEXMFLOCAL, ! ! $TEXMFMAIN}
But, again, most of this will “just work”.

4. Create your local®> TEX tree. You must follow the directory structure of your
existing texmf directory, which will be found at TEXMFMAIN. For example, latex
packages should go under $TEXMFLOCAL/tex/latex/.

5. Install the package. For example, you would unpack the FoilTEX tarball and
copy it to $TEXMFLOCAL/tex/latex/foiltex. The foiltex directory contains
various files.

6. Run: texhash. This should create $TEXMFLOCAL/1s-R amongst others.

Your package is now installed and available to IXTEX. To make it available to IyX,
you need to create a Layout file, if one is not already available. (See the next sec-
tion.) Once you have a layout file, you need only reconfigure (Tools> Reconfigure)
and then restart [yX. You should then see your new package—for example slides
(Foil TEX)—under Document > Settings in the Document Class drop box.

5.2 Layouts

This section describes how to write and install your own LyX layout files and walks
through the article text class format as an example. The .layout files describe
what paragraph and character styles are available for a given document class and how
LyX should display them. We try to provide a thorough description of the process
here; however, there are so many different types of documents supported by ETEX
classes that we can’t hope to cover every different possibility or problem you might
encounter. (The IxX users’ list is frequented by people with lots of experience with
layout design who are willing to share what they’ve learned.)

!This usually lives in the directory $TEXMF/web2c, though you can run kpsewhich texmf.cnf to
locate it.

2We’ll assume henceforth that you're defining ‘local’ TgX tree. If you're defining a user tree, just
adjust as necessary.

18

5.2 Layouts

As you prepare to write a new layout, it is extremely helpful to look at the example
layouts distributed with LyX. If you use a nice IXTEX document class that might be
of interest for others, too, and have a nice corresponding IyX layout, feel free to
contribute the stuff to us, so we may put it into the distribution. There is also a
section on the LyX wiki for this kind of material.

All the tags described in this chapter are case-insensitive; this means that Style,
style and StY1E are really the same command. The possible values are printed in
brackets after the feature’s name. The default value if a feature isn’t specified inside
a text class-description is typeset emphasized. If the argument has a data type like
“string” or “float”, the default is shown like this: float=default.

5.2.1 Layout modules

Similar to layout files, and new with IyX 1.6, are layout modules. Modules are to
KETEX packages much as layouts are to KTEX classes, and some modules—such as
the endnotes module—provide support for just such a package. In a sense, layout
modules are similar to included files—files like stdsections.inc—in that modules
are not specific to a given document layout but may be used with many different
layouts. The difference is that using a layout module does not require editing the
layout file. Rather, modules are selected in the Document > Settings dialog.

Building modules is the easiest way to get started with layout editing, since it can
be as simple as adding a single new paragraph or flex inset. But modules may, in
principle, contain anything a layout file can contain.

A module must begin with a line like the following:

#\DeclarelyXModule [endnotes.sty]{Endnotes}

The argument in square brackets is optional: It declares any IXTEX packages on which
the module depends. The mandatory argument, in curly brackets, is the name of the
module, as it should appear in Document > Settings.

The module declaration should then be followed by lines like the following:

#DescriptionBegin

#Adds an endnote command, in addition to footnotes.

#You will need to add \theendnotes in TgX code where you
#want the endnotes to appear.

#DescriptionEnd

#Requires: somemodule | othermodule

#Excludes: badmodule

The description is used in Document > Settings to provide the user with information
about what the module does. The Requires line is used to identify other modules
with which this one must be used; the Excludes line is used to identify modules with
which this one may not be used. Both are optional, and, as shown, multiple modules
should be separated with the pipe symbol: |. Note that the required modules are

19

http://wiki.lyx.org/Layouts/Layouts

5 Installing New Document Classes

treated disjunctively: at least one of the required modules must be used. Similarly,
no excluded module may be used. Note that modules are identified here by their file-
names without the .module extension. So somemodule is really somemodule.module.

After creating a new module, you will need to reconfigure and then restart IyX for
the module to appear in the menu. However, changes you make to the module will be
seen immediately, if you open Document > Settings, highlight something, and then hit
“OK". It is strongly recommended that you save your work before doing so. In fact,
it is strongly recommended that you not attempt to edit modules while simultaneously
working on documents. Though of course the developers strive to keep LyX stable
in such situations, syntax errors and the like in your module file could cause strange
behavior.

5.2.2 Supporting new document classes

There are two situations you are likely to encounter when wanting to support a
new KTEX document class, involving BTEX 2¢ class (.cls) and style (.sty) files.
Supporting a style file is usually fairly easy. Supporting a new document class is a
bit harder.

5.2.3 A layout for a sty file

If your new document class is provided as a style file that is used in conjunction with
an existing, supported document class—for the sake of the example, we’ll assume that
the style file is called myclass.sty and it is meant to be used with report.cls, which
is a standard class—start by copying the existing class’s layout file into your local
directory:

cp report.layout ~/.lyx/layouts/myclass.layout
Then edit myclass.layout and change the line:
\DeclareEXClass{report}
to read
\DeclareEXClass [report, myclass.sty]{report (myclass)}
Then add:

Preamble
\usepackage{myclass}
EndPreamble

20

5.3 Declaring a new text class

near the top of the file.

Start LyX and select Tools>>Reconfigure. Then restart IyX and try creating a
new document. You should see "report (myclass)" as a document class option in
the Document>Settings dialog. It is likely that some of the sectioning commands
and such in your new class will work differently from how they worked in the base
class—report in this example—so you can fiddle around with the settings for the
different sections if you wish.

5.2.4 Layout for a cls file

There are two possibilities here. One is that the class file is itself based upon an
existing document class. For example, many thesis classes are based upon book.cls.
To see whether yours is, look for a line like

\LoadClass{book}

in the file. If so, then you may proceed largely as in the previous section, though the
DeclarelfTEX Class line will be different. If your new class is thesis, and it is based
upon book, then the line should read:?

\DeclareKXClass [thesis,book] {thesis}

If, on the other hand, the new class is not based upon an existing class, you will
probably have to “roll your own” layout. We strongly suggest copying an existing
layout file which uses a similar IATEX class and then modifying it, if you can do so.
At least use an existing file as a starting point so you can find out what items you
need to worry about. Again, the specifics are covered below.

5.3 Declaring a new text class

When it’s finally time to get your hands dirty and create or edit your own layout file,
the following sections describe what you're up against. Our advice is to go slowly,
save and test often, listen to soothing music, and enjoy one or two of your favorite
adult beverages; more if you are getting particularly stuck. It’s really not that hard,
except that the multitude of options can become overwhelming if you try to do to
much in one sitting. Go have another adult beverage, just for good measure.

Here we go!

Lines in a layout file which begin with a # are comments. There is one exception
to this rule: all layouts should begin with lines like:

#% Do not delete the line below; configure depends on this
\DeclareEXClass{article}

3And it will be easiest if you save the file to thesis.layout: LyX assumes that the document
class has the same name as the layout file.

21

5 Installing New Document Classes

The second line is used when you configure LyX. The layout file is read by the KTEX
script chkconfig.ltx, in a special mode where # is ignored. The first line is just
a IfTEX comment, and the second one contains the declaration of the text class. If
these lines appear in a file named article.layout, then they define a text class
of name article (the name of the layout file) which uses the KTEX document class
article.cls (the default is to use the same name as the layout). The string “article”
that appears above is used as a description of the text class in the Document > Settings
dialog.

Let’s assume that you wrote your own text class that uses the article.cls doc-
ument class, but where you changed the appearance of the section headings. If you
put it in a file myarticle.layout, the header of this file should be:

#/ Do not delete the line below; configure depends on this
\DeclareKXClass[article]l{article (with my own headings)}

This declares a text class myarticle, associated with the IXTEX document class
article.cls and described as “article (with my own headings)”. If your text class
depends on several packages, you can declare it as:

#% Do not delete the line below; configure depends on this
\DeclareELXClass[article,foo.styl{article (with my own headings)}

This indicates that your text class uses the foo.sty package. Finally, it is also possible
to declare classes for DocBook code. Typical declarations will look like

#% Do not delete the line below; configure depends on this
\DeclareDocBookClass[article] {SGML (DocBook article)}

Note that these declarations can also be given an optional parameter declaring the
name of the document class (but not a list).
So, to be as explicit as possible, the form of the layout declaration is:

\DeclareELXClass[class,package.sty]l{layout description}

The class need only be specified if the name of the KTEX class file and the name of
the layout file are different or if there are packages to load. If the name of the class
file is not specified, then LyX will simply assume that it is the same as the name of
the layout file.

When the text class has been modified to your taste, all you have to do is to copy it
either to IyXDir/layouts/ or to UserDir/layouts, run Tools> Reconfigure, exit IyX
and restart it. Then your new text class should be available along with the others.

In versions of LyX prior to 1.6, you had to restart LyX to see any changes you
made to your layout files. As a result, editing layout files could be very time con-
suming. Beginning with 1.6, however, you can force a reload of the layout currently
in use by using the LyX function layout-reload. There is no default binding for this
function—though, of course, you can bind it to a key yourself. If you want to use

22

5.3 Declaring a new text class

this function, then, you should simply enter it in the mini-buffer. Warning: This
is very much an ‘advanced feature’ It is strongly recommended that you save your
work before using this function. In fact, it is strongly recommended that you not
attempt to edit your layout while simultaneously working on a document that you
care about. Use a test document. Syntax errors and the like in your layout file could
cause peculiar behavior. In particular, such errors could cause LyX to regard the
current layout as invalid and to attempt to switch to some other layout. The LyX
team strives to keep IyX stable in such situations, but safe is better than sorry.

5.3.1 File format

The first non-comment line must contain the file format number:

Format [int] This tag was introduced with IxyX 1.4.0 (layout files of IyX 1.3.x and
earlier don’t have an explicit file format). The file format that is documented
here is format 11.

5.3.2 General text class parameters

These are the general parameters which describe the form of the entire document:
AddToPreamble Adds information to the document preamble. Must end with “EndPreamble”.

ClassOptions Describes various global options supported by the document class.
See Section 5.3.3 for a description. Must end with “End”.

Columns [1, 2] Whether the class should default to having one or two columns. Can
be changed in the Document > Settings dialog.

Counter This sequence defines a new counter. See Section 5.3.7 for details. Must
end with “End”.

DefaultFont Sets the default font used to display the document. See Section 5.3.8
for how to declare fonts. Must end with “EndFont”.

DefaultModule [string] Specifies a module to be included by default with this
document class, which should be specified by filename without the .module
extension. The user can still remove the module, but it will be active at the
outset. (This applies only when new files are created, or when this class is
chosen for an existing document.)

DefaultStyle [string] This is the style that will be assigned to new paragraphs,

usually Standard. This will default to the first defined style if not given, but
you are highly encouraged to use this directive.

23

5 Installing New Document Classes

ExcludesModule [string] Indicates that the module in question—which should be
specified by filename without the .module extension—cannot be used with this
document class. This might be used in a journal-specific layout file to prevent,
say, the use of the theorems-sec module that numbers theorems by section.
This tag may not be used in a module. Modules have their own way of excluding
other modules (see 5.2.1).

Float Defines a new float. See Section 5.3.5 for details. Must end with “End”.

Input As its name implies, this command allows you to include another layout defi-
nition file within yours to avoid duplicating commands. Common examples are
the standard layout files, for example, stdclass.inc, which contains most of
the basic layouts.

InsetLayout This section (re-)defines the layout of an inset. It can be applied to
an existing inset of to a new, user-defined inset, e. g. a new character style. See
Section 5.3.6 for more information. Must end with “End”.

LeftMargin A string that indicates the width of the left margin on the screen, for
example, “MMMMM”.

NoFloat This command deletes an existing float. This is particularly useful when
you want to suppress a float that has be defined in an input file.

NoStyle This command deletes an existing style. This is particularly useful when
you want to suppress a style that has be defined in an input file.

OutputType A string indicating what sort of output documents using this class will
produce. At present, the options are: ‘docbook’, ‘latex’, and ‘literate’.

PageStyle [plain, empty, headings| The class default pagestyle. Can be changed
in the Document > Settings dialog.

Preamble Sets the preamble for the IXTEX document. Note that this will completely
override any prior Preamble or AddToPreamble declarations. Must end with
“EndPreamble”.

Provides [string] [0, 1] Whether the class already provides the feature string. A
feature is in general the name of a package (amsmath, makeidx, ...) or a macro
(url, boldsymbol,...); the complete list of supported features is unfortunately
not documented outside the LyX source code—but see EXFeatures.cpp if
you're interested. Help>ETEX Configuration also gives an overview of the sup-
ported packages.

ProvidesModule [string] Indicates that this layout provides the functionality of
the module mentioned, which should be specified by the filename without the
.module extension. This will typically be used if the layout includes the module

24

5.3 Declaring a new text class

directly, rather than using the DefaultModule tag to indicate that it ought to be
used. It could be used in a module that provided an alternate implementation
of the same functionality.

Requires [string| Whether the class requires the feature string. Multiple features
must be separated by commas. Note that you can only request supported
features.

RightMargin A string that indicates the width of the right margin on the screen,
for example, “MMMMM”.

SecNumDepth Sets which divisions get numbered. Corresponds to the secnumdepth
counter in IXTEX.

Sides [1, 2] Whether the class-default should be printing on one or both sides of the
paper. Can be changed in the Document > Settings dialog.

Style This sequence defines a new paragraph style. If the style already exists, it will
redefine some of its parameters instead. See Section 5.3.4 for details. Must end
with “End”.

TitleLatexName [string="maketitle"| The name of the command or environment
to be used with TitleLatexType.

TitleLatexType [CommandAfter, Environment| Indicates what kind of markup is
used to define the title of a document. CommandAfter means that the macro
with name TitleLatexName will be inserted after the last layout which has
“InTitle 1”. Environment corresponds to the case where the block of para-
graphs which have “InTitle 1”7 should be enclosed into the TitleLatexName
environment.

TocDepth Sets which divisions are included in the table of contents. Corresponds to

the tocdepth counter in KITEX.

5.3.3 ClassOptions section

The ClassOptions section can contain the following entries:

FontSize [string="10[11|12"] The list of available font sizes for the document’s
main font, separated by “|”.

Header Used to set the DTD line with XML-based output classes. E.g.: PUBLIC
“-//OASIS//DTD DocBook V4.2//EN".

PageStyle [string="emptyl|plain|headings|fancy"| The list of available page styles,
separated by “|”.

25

5 Installing New Document Classes

Other [string=""] Some document class options, separated by a comma, that will
be added to the optional part of the \documentclass command.

The ClassOptions section must end with “End”.

5.3.4 Paragraph Styles
A paragraph style description looks like this:*

Style name
End
where the following commands are allowed:
Align [block, left, right, center| Paragraph alignment.

AlignPossible [block, left, right, center| A comma separated list of permit-
ted alignments. (Some IXTEX styles prohibit certain alignments, since those
wouldn’t make sense. For example a right-aligned or centered enumeration
isn’t possible.)

BottomSep [float=0]° The vertical space with which the last of a chain of para-
graphs with this layout is separated from the following paragraph. If the next
paragraph has another layout, the separations are not simply added, but the
maximum is taken.

Category [string] The category for this style. This is used to group related styles
in the Layout combobox on the toolbar. Any string can be used, but you may
want to use existing categories with your own styles.

CommandDepth Depth of XML command. Used only with XML-type formats.
CopyStyle [string] Copies all the features of an existing style into the current one.

DependsOn The name of a style whose preamble should be output before this one.
This allows to ensure some ordering of the preamble snippets when macros
definitions depend on one another.®

EndLabeltype [No_Label, Box, Filled_Box, Static| The type of label that stands
at the end of the paragraph (or sequence of paragraphs if LatexType is Environment,
Item_Environment or List_Environment). No_Label means “nothing”, Box
(resp. Filled Box) is a white (resp. black) square suitable for end of proof
markers, Static is an explicit text string.

4Note that this will either define a new layout or modify an existing one.

5Note that a ‘float’ here is a real number, such as: 1.5.

6Note that, besides that functionality, there is no way to ensure any ordering of preambles. The
ordering that you see in a given version of LyX may change without warning in later versions.

26

5.3 Declaring a new text class

EndLabelString [string=""| The string used for a label with a Static EndLabelType.
Fill_Bottom [0, 1] Similar to Fill_Top.

Fill_Top [0, 1] With this parameter the Fill value of the “Vertical space above” list
of the Edit>Paragraph Settings dialog can be set when initializing a paragraph
with this style.”

Font The font used for both the text body and the label. See section 5.3.8. Note
that defining this font automatically defines the LabelFont to the same value.
So you should define this one first if you also want to define LabelFont.

FreeSpacing [0, 1] Usually IyX doesn’t allow you to insert more than one space
between words, since a space is considered as the separation between two words,
not a character or symbol of its own. This is a very fine thing but sometimes
annoying, for example, when typing program code or plain I¥XTEX code. For
this reason, FreeSpacing can be enabled. Note that LyX will create protected
blanks for the additional blanks when in another mode than I¥TEX-mode.

InnerTag [[FIXME]] (Used only with XML-type formats.)

InTitle [0, 1] If 1, marks the layout as being part of a title block (see also the
TitleLatexType and TitleLatexName global entries).

ItemSep [float=0| This provides extra space between paragraphs that have the same
layout. If you put other layouts into an environment, each is separated with the
environment’s Parsep. But the whole items of the environment are additionally
separated with this Itemsep. Note that this is a multiplier.

ItemTag [[FIXME]] (Used only with XML-type formats.)

KeepEmpty [0, 1] Usually LyX does not allow you to leave a paragraph empty, since
it would lead to empty IXTEX output. There are some cases where this could
be desirable however: in a letter template, the required fields can be provided
as empty fields, so that people do not forget them; in some special classes, a
layout can be used as some kind of break, which does not contain actual text.

LabelBottomsep [float=0] The vertical space between the label and the text body.
Only used for labels that are above the text body (Top_Environment, Centered_Top_Environment

LabelCounter [string=""]
The name of the counter for automatic numbering (see Section 5.3.7 for details).
This must be given if Labeltype is Counter.

LabelFont The font used for the label. See section 5.3.8.

"Note from Jean-Marc: I'm not sure that this setting has much use, and it should probably be
removed in later versions.

27

5 Installing New Document Classes

LabelIndent Text that indicates how far a label should be indented.

Labelsep [string=""] The horizontal space between the label and the text body.
Only used for labels that are not above the text body.

LabelString [string=""| The string used for a label with a Static labeltype. When
LabelCounter is set, this string can be contain the special formatting com-
mands described in Section 5.3.7.%

LabelStringAppendix [string=""] This is used inside the appendix instead of LabelString.
Note that every LabelString statement resets LabelStringAppendix too.

LabelTag [FIXME] (Used only with XML-type formats.)

Labeltype [No_La,bel, Manual, Static, Top_Environment,

Centered_Top_Environment, Sensitive, Counter]

Manual means the label is the very first word (up to the first real blank).?
Static means it is defined in the layout (see LabelString). Top_Environment
and Centered_Top_Environment are special cases of Static. The label will be
printed above the paragraph, but only at the top of an environment or the top of
a chain of paragraphs with this layout. Usage is for example the Abstract layout
or the Bibliography layout. This is also the case for Manual labels with latex type
Environment, in order to make layouts for theorems work correctly. Sensitive
is a special case for the caption-labels “Figure” and “Table”. Sensitive means
the (hardcoded) label string depends on the kind of float. The Counter label
type defines automatically numbered labels. See Section 5.3.7.

LatexName The name of the corresponding KITEX stuff. Either the environment or
command name.

LatexParam An optional parameter for the corresponding LatexName stuff. This
parameter cannot be changed from within LyX.

LatexType [Paragraph, Command, Environment, Item_Environment, List_Environment]

How the layout should be translated into IXTEX. Paragraph means nothing spe-

cial. Command means \LatexzName{. ..} and Environment means \begin{LatexzName}. . .\e
Item Environment is the same as Environment, except that a \item is gener-

ated for each paragraph of this environment. List Environment is the same

as Item_Environment, except that LabelWidthString is passed as an argu-

ment to the environment. LabelWidthString can be defined in the Layout>

Paragraph dialog. LatexzType is perhaps a bit misleading, since these rules

apply to SGML classes, too. Visit the SGML class files for specific examples.

8For the sake of backwards compatibility, the string @style-name@ will be replaced by the ex-
panded LabelString of style style-name. This feature is now obsolete and should be replaced
by the mechanisms of Section 5.3.7.

9Use protected spaces if you want more than one word as the label.

28

5.3 Declaring a new text class

Putting the last few things together, the IXTEX output will be either:

or:

\latexname[latexparam]{...}

\begin{latexname}[latexparam] ... \end{latexname}.

depending upon the ETEX type.

LeftMargin [string=""] If you put layouts into environments, the leftmargins are

not simply added, but added with a factor depf‘w. Note that this parameter is
also used when the margin is defined as Manual or Dynamic. Then it is added
to the manual or dynamic margin.

The argument is passed as a string. For example “MM” means that the paragraph
is indented with the width of “MM” in the normal font. You can get a negative
width by prefixing the string with “~”. This way was chosen so that the look is

the same with each used screen font.

Margin [Static, Manual, Dynamic, First_Dynamic, Right_Address_Box|

The kind of margin that the layout has on the left side. Static just means
a fixed margin. Manual means that the left margin depends on the string
entered in the Edit> Paragraph Settings dialog. This is used to typeset nice lists
without tabulators. Dynamic means that the margin depends on the size of the
label. This is used for automatic enumerated headlines. It is obvious that the
headline “5.4.3.2.1 Very long headline” must have a wider left margin (as wide
as “5.4.3.2.1”7 plus the space) than “3.2 Very long headline”, even if standard
“word processors” are not able to do this. First_Dynamic is similar, but only
the very first row of the paragraph is dynamic, while the others are static; this
is used, for example, for descriptions. Right_Address_Box means the margin is
chosen in a way that the longest row of this paragraph fits to the right margin.
This is used to typeset an address on the right edge of the page.

NeedProtect [0,1] Whether fragile commands in this layout should be \protect’ed.

(Note: This is not whether this command should itself be protected.)

Newline [0, 1] Whether newlines are translated into KTEX newlines (\\) or not. The

translation can be switched off to allow more comfortable ITEX editing inside
Ly X.

NextNoIndent [1, 0] Whether the following Paragraph is allowed to indent its very

first row. 1 means that it is not allowed to do so; 0 means it could do so if it
wants to.

ObsoletedBy Name of a layout that has replaced this layout. This is used to rename

a layout, while keeping backward compatibility.

29

5 Installing New Document Classes

OptionalArgs [int=0] The number of optional arguments that can be used with this
layout. This is useful for things like section headings, and only makes sense with

BTEX.

ParIndent [string=""| The indent of the very first line of a paragraph. The Parindent
will be fixed for a certain layout. The exception is Standard layout, since the in-
dentation of a Standard layout paragraph can be prohibited with NextNoIndent.
Also, Standard layout paragraphs inside environments use the Parindent of the
environment, not their native one. For example, Standard paragraphs inside
an enumeration are not indented.

Parsep [float=0] The vertical space between two paragraphs of this layout.

Parskip [float=0] LyX allows the user to choose either “indent” or “skip” to typeset
a document. When “indent” is chosen, this value is completely ignored. When
“skip” is chosen, the parindent of a KXTEXtype “Paragraph” layout is ignored
and all paragraphs are separated by this parskip argument. The vertical space
is calculated with value * DefaultHeight where DefaultHeight is the height
of a row with the normal font. This way, the look stays the same with different
screen fonts.

PassThru [0, 1] Whether the contents of this paragraph should be output in raw
form, meaning without special translations that KTEX would require.

Preamble Information to be included in the KTEX preamble when this style is used.
Used to define macros, load packages, etc., required by this particular style.
Must end with “EndPreamble”.

Requires [string] Whether the layout requires the feature string. See the descrip-
tion of Provides above (page 27) for information on ‘features’

RightMargin [string=""| Similar to LeftMargin.

Spacing [single, onehalf, double, other wvalue] This defines what the default
spacing should be in the layout. The arguments single, onehalf and double
correspond respectively to a multiplier value of 1, 1.25 and 1.667. If you spec-
ify the argument other, then you should also provide a numerical argument
which will be the actual multiplier value. Note that, contrary to other param-
eters, Spacing implies the generation of specific K'TEX code, using the package
setspace.sty.

TextFont The font used for the text body . See section 5.3.8.

TocLevel [int] The level of the style in the table of contents. This is used for
automatic numbering of section headings.

30

5.3 Declaring a new text class

TopSep [float=0] The vertical space with which the very first of a chain of para-
graphs with this layout is separated from the previous paragraph. If the pre-
vious paragraph has another layout, the separations are not simply added, but
the maximum is taken.

5.3.5 Floats

Since version 1.3.0 of LyX, it is has been both possible and necessary to define the
floats (figure, table, ...) in the text class itself. Standard floats are included in the
file stdfloats.inc, so you may have to do no more than add

Input stdfloats.inc

to your layout file. If you want to implement a text class that proposes some other
float types (like the AGU class bundled with IyX), the information below will hope-
fully help you:

Extension [string=""] The file name extension of an auxiliary file for the list of
figures (or whatever). BTEX writes the captions to this file.

7 77]

GuiName [string=""] The string that will be used in the menus and also for the

caption.

EfXBuiltin [0, 1] Set to 1 if the float is already defined by the BTEX document
class. If this is set to 0, the float will be defined using the I¥TEX package

float.
ListName [string=""] The heading used for the list of floats.
NumberWithin [string=""] This (optional) argument determines whether floats of

this class will be numbered within some sectional unit of the document. For
example, if within is equal to chapter, the floats will be numbered within
chapters.

Placement [string=""] The default placement for the given class of floats. The
string should be as in standard BTEX: t, b, p and h for top, bottom, page,
and here, respectively.! On top of that there is a new type, H, which does not
really correspond to a float, since it means: put it “here” and nowhere else.
Note however that the H specifier is special and, because of implementation
details, cannot be used in non-built in float types. If you do not understand
what this means, just use “tbp”.

Style [string=""] The style used when defining the float using \newfloat.

1ONote that the order of these letters in the string is irrelevant, like in IATREX.

31

5 Installing New Document Classes

Type [string=""] The “type” of the new class of floats, like program or algorithm.
After the appropriate \newfloat, commands such as \begin{program} or
\end{algorithm*} will be available.

Note that defining a float with type type automatically defines the corresponding
counter with name type.

5.3.6 Flex insets and InsetLayout

LyX has supported character styles since version 1.4.0; as of version 1.6.0, these are
called Flex insets.
Flex insets come in three different kinds:

e character style (CharStyle): These define semantic markup corresponding to
such ITEX commands as \noun and \code.

e user custom (Custom): These can be used to define custom collapsible insets,
similar to TEX code, footnote, and the like. An obvious example is an endnote
inset, which is defined in the endnote module.

e XML elements (Element): For use with DocBook classes.

Flex insets are defined using the InsetLayout tag, which shall be explained in a
moment.

The InsetLayout tag also serves another function: It can be used to customize
the general layout of many different types of insets. Currently, InsetLayout can be
used to customize the layout parameters for footnotes, marginal notes, note insets,
TEX code (ERT) insets, branches, listings, indexes, boxes, tables, algorithms, URLS,
and optional arguments, as well as to define Flex insets.

The InsetLayout definition must begin with a line of the form:

InsetLayout <Type>

Here <Type> indicates the inset whose layout is being defined, and here there are two
cases.

1. The layout for a pre-existing inset is being modified. In this case, can be <Type>
any one of the following: Algorithm, Branch, Box, Box:shaded, ERT, Figure,
Foot, Index, Info, Info:menu, Info:shortcut, Info:shortcuts, Listings,
Marginal, Note:Comment, Note:Note, Note:GreyedOut, OptArg, Table, or
URL.

2. The layout for a Flex inset is being defined. In this case, <Type> can be any
valid identifier not used by a pre-existing inset. Note that the definition of a
flex inset must also include a IyXType entry.

The InsetLayout definition can contain the following entries:

32

5.3 Declaring a new text class

BgColor The color for the inset’s background. The valid colors are defined in
src/ColorCode.h.

CopyStyle As with paragraph styles (see page 5.3.4).

CustomPars [0,1] Indicates whether the user may employ the Paragraph Settings
dialog to customize the paragraph.

Decoration can be Classic, Minimalistic, or Conglomerate, describing the ren-
dering style used for the inset’s frame and buttons. Footnotes generally use
Classic, ERT insets generally Minimalistic, and character styles Conglomerate.

End Required at the end of the InsetLayout declarations.

Font The font used for both the text body and the label. See section 5.3.8. Note
that defining this font automatically defines the LabelFont to the same value,
so define this first and define LabelFont later if you want them to be different.

ForceLTR Force the “latex” language, leading to Left-to-Right (latin) output, e.g.
in TEX code or URL. A kludge.

ForcePlain [0,1] Indicates whether the PlainLayout should be used or, instead, the
user can change the paragraph style used in the inset.

FreeSpacing As with paragraph styles (see page 27).
KeepEmpty As with paragraph styles (see page 27).

LabelFont The font used for the label. See section 5.3.8. Note that this definition
can never appear before Font, lest it be ineffective.

LabelString What will be displayed on the button or elsewhere as the inset label.
Some inset types (TEX code and Branch) modify this label on the fly.

LatexName The name of the corresponding KTEX stuff. Either the environment or
command name.

LatexParam The optional parameter for the corresponding LatexName stuff, includ-
ing possible bracket pairs like []J. This parameter cannot be changed from
within LyX.

LatexType As with paragraph styles (see page 28).

LyxType Can be charstyle, custom, element, or end (indicating a dummy defini-
tion ending definitions of charstyles, etc). This entry is required in and is only
meaningful for Flex insets. Among other things, it determines on which menu
this inset will appear.

33

5 Installing New Document Classes

MultiPar [0,1] Whether multiple paragraphs are permitted in this inset. This will
also set CustomPars to the same value and ForcePlain to the opposite value.
These can be reset to other values, if they are used after MultiPar.

NeedProtect [0,1] Whether fragile commands in this layout should be \protect’ed.
(Note: This is not whether the command should itself be protected.)

PassThru [0,1] As with paragraph styles (see page 5.3.4).
Preamble As with paragraph styles (see page 30).

Requires [string] As with paragraph styles (see page 30).

5.3.7 Counters

Since version 1.3.0 of LyX, it is both possible and necessary to define the counters
(chapter, figure, ...) in the text class itself. The standard counters are defined in the
file stdcounters.inc, so you may have to do no more than add

Input stdcounters.inc

to your layout file to get them to work. But if you want to define custom counters,
then you can do so. The counter declaration must begin with:

Counter name

where of course ‘name’ is replaced by the name of the counter. And it must end with
“End”. The following parameters can also be used:

LabelString [string=""] when this is defined, this string defines how the counter
is displayed. Setting this value sets LabelStringAppendix to the same value.
The following special constructs can be used in the string:

e \thecounter will be replaced by the expansion of the LabelString (or
LabelStringAppendix) of the counter counter.

e counter values can be expressed using KTEX-like macros \numbertype {counter?,
where numbertype can be:'! arabic: 1, 2, 3,...; alph for lower-case let-
ters: a, b, ¢, ...; Alph for upper-case letters: A, B, C, ...; roman for
lower-case roman numerals: i, ii, iii, ...; Roman for upper-case roman nu-
merals: I, II, ITI. .. ; hebrew for hebrew numerals.

If LabelString is not defined, a default value is constructed as follows: if the counter
has a master counter master (defined via Within), the string \themaster.\arabic{counter}
is used; otherwise the string \arabic{counter} is used.

I Actually, the situation is a bit more complicated: any numbertype other than those described
below will produce arabic numerals. It would not be surprising to see this change in the future.

34

5.3 Declaring a new text class

LabelStringAppendix [string=""] Same as LabelString, but for use in the Ap-
pendix.

Within [string=""] If this is set to the name of another counter, the present counter
will be reset every time the other one is increased. For example, subsection
is numbered inside section.

5.3.8 Font description

A font description looks like this:

Font or LabelFont

Eﬁ&font
The following commands are available:
Color [none, black, white, red, green, blue, cyan, magenta, yellow|
Family [Roman, Sans, Typewriter]

Misc [string] Valid argument are: emph, noun, underbar, no_emph, no_noun and
no_bar. Each of these turns on or off the corresponding attribute.
For example, emph turns on emphasis, and no_emph turns it off. If the latter
seems puzzling, remember that the font settings for the present context are
generally inherited from the surrounding context. So no_emph would turn off
the emphasis that was anyway in effect, say, in a theorem environment.

Series [Medium, Bold]
Shape [Up, Italic, SmallCaps, Slanted]

Size [tiny, small, normal, large, larger, largest, huge, giant]

5.3.9 Upgrading old layout files

The file format of layout files changes from time to time, so old layout files need to
be converted. This process has been automated since Iy X 1.4.0: If LyX reads an old
format layout file it will call the conversion tool IyXDir/scripts/layout2layout.py
and convert it to a temporary file in current format. The original file is left untouched.
If you want to convert the layout file permanently, just call the converter by hand:

python $LyXDir/scripts/layout2layout.py myclass.layout myclassnew.layout

35

5 Installing New Document Classes

(You need to replace $LyXDir with the name of your LyX system directory, unless you
happen to have defined such an environment variable.) Then copy myclassnew.layout
to UserDir/layouts/.

The automatic conversion only handles syntax changes. It cannot handle the case
where the contents of included files was changed, so these will have to be converted
separately.

5.4 Creating Templates

Templates are created just like usual documents. The only difference is that usual
documents contain all possible settings, including the font scheme and the paper size.
Usually a user doesn’t want a template to overwrite his defaults in these cases. For
that reason, the designer of a template should remove the corresponding commands
like \fontscheme or \papersize from the template LyX file. This can be done with
any simple text-editor, for example vi or xedit.

Put the edited template files you create in UserDir/templates/, copy the ones
you use from the global template directory in IyXDir/templates/ to the same place,
and redefine the template path in the Toolsr Preferences> Paths dialog.

Note that there is a template which has a particular meaning: defaults.lyx. This
template is loaded every time you create a new document with File>>New in order
to provide useful defaults. To create this template from inside LyX, all you have to
do is to open a document with the correct settings, and use the Save as Document
Defaults button.

36

6 Including External Material

WARNING: This portion of the documentation has not been updated for some time.
We certainly hope that it is still accurate, but there are no guarantees.

The use of material from sources external to IyX is covered in detail in the Em-
bedded Objects manual. This part of the manual covers what needs to happen behind
the scenes for new sorts of material to be included.

6.1 How does it work?

The external material feature is based on the concept of a template. A template is a
specification of how LyX should interface with a certain kind of material. As bundled,
LyX comes with predefined templates for Xfig figures, various raster format images,
chess diagrams, and LilyPond music notation. You can check the actual list by using
the menu Insert> File> External Material. Furthermore, it is possible to roll your own
template to support a specific kind of material. Later we’ll describe in more detail
what is involved, and hopefully you will submit all the templates you create so we
can include them in a later IyX version.

Another basic idea of the external material feature is to distinguish between the
original file that serves as a base for final material and the produced file that is
included in your exported or printed document. For example, consider the case of
a figure produced with Xfig. The Xfig application itself works on an original file
with the .fig extension. Within Xfig, you create and change your figure, and when
you are done, you save the fig-file. When you want to include the figure in your
document, you invoke transfig in order to create a PostScript file that can readily
be included in your KTEX file. In this case, the .fig file is the original file, and the
PostScript file is the produced file.

This distinction is important in order to allow updating of the material while you
are in the process of writing the document. Furthermore, it provides us with the
flexibility that is needed to support multiple export formats. For instance, in the
case of a plain text file, it is not exactly an award-winning idea to include the figure
as raw PostScript. Instead, you’d either prefer to just include a reference to the
figure or try to invoke some graphics to ASCII converter to make the final result look
similar to the real graphics. The external material management allows you to do this,
because it is parametrized on the different export formats that Iy X supports.

Besides supporting the production of different products according to the exported
format, it supports tight integration with editing and viewing applications. In the

37

6 Including External Material

case of an Xfig figure, you are able to invoke Xfig on the original file with a single
click from within the external material dialog in LyX, and also preview the produced
PostScript file with Ghostview with another click. No more fiddling around with the
command line and /or file browsers to locate and manipulate the original or produced
files. In this way, you are finally able to take full advantage of the many different
applications that are relevant to use when you write your documents, and ultimately
be more productive.

6.2 The external template configuration file

It is relatively easy to add custom external template definitions to [y X. However, be
aware that doing this in an careless manner most probably will introduce an easily
exploitable security hole. So before you do this, please read the discussion about
security in section 6.4.

Having said that, we encourage you to submit any interesting templates that you
create.

The external templates are defined in the LyXDir/lib/external_templates file.
You can place your own version in UserDir/external templates.

A typical template looks like this:

Template XFig

GuiName "XFig: $$AbsOrRelPathParent$$Basename"”

HelpText

An XFig figure.

HelpTextEnd

InputFormat fig

FileFilter "x.fig"

AutomaticProduction true

Transform Rotate

Transform Resize

Format EX

TransformCommand Rotate RotationLatexCommand

TransformCommand Resize ResizelatexCommand

Product "$$RotateFront$$ResizeFront
\\input{$$AbsOrRelPathMaster$$Basename.pstex_t}
$$ResizeBack$$RotateBack"

UpdateFormat pstex

UpdateResult "$$AbsPath$$Basename.pstex_t"

Requirement "graphicx"

ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pstex_t"

ReferencedFile latex "$$AbsPath$$Basename.eps"

ReferencedFile dvi "$$AbsPath$$Basename.eps"

FormatEnd

38

6.2 The external template configuration file

Format PDFEIRX

TransformCommand Rotate RotationLatexCommand

TransformCommand Resize ResizelLatexCommand

Product "$$RotateFront$$ResizeFront
\\input{$$AbsOrRelPathMaster$$Basename.pdftex_t}
$$ResizeBack$$RotateBack"

UpdateFormat pdftex

UpdateResult "$$AbsPath$$Basename.pdftex_t"

Requirement "graphicx"

ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pdftex_t"

ReferencedFile latex "$$AbsPath$$Basename.pdf"

FormatEnd

Format Ascii

Product "$$Contents(\"$$AbsPath$$Basename.asc\")"

UpdateFormat asciixfig

UpdateResult "$$AbsPath$$Basename.asc"

FormatEnd

Format DocBook

Product "<graphic fileref=\"$$AbsOrRelPathMaster$$Basename.eps\">
</graphic>"

UpdateFormat eps

UpdateResult "$$AbsPath$$Basename.eps"

ReferencedFile docbook "$$AbsPath$$Basename.eps"

ReferencedFile docbook-xml "$$AbsPath$$Basename.eps"

FormatEnd

Product "[XFig: $$FName]"

FormatEnd

TemplateEnd
As you can see, the template is enclosed in Template ... TemplateEnd. It contains
a header specifying some general settings and, for each supported primary document
file format, a section Format ... FormatEnd.

6.2.1 The template header

AutomaticProduction truel|false Whether the file represented by the template
must be generated by IxX. This command must occur exactly once.

FileFilter <pattern> A glob pattern that is used in the file dialog to filter out
the desired files. If there is more than one possible file extension (e.g. tgif
has .obj and .tgo), use something like "*.{obj,tgo}". This command must
occur exactly once.

GuiName <guiname> The text that is displayed on the button. This command must
occur exactly once.

39

6 Including External Material

HelpText <text> HelpTextEnd The help text that is used in the External dialog.
Provide enough information to explain to the user just what the template can
provide him with. This command must occur exactly once.

InputFormat <format> The file format of the original file. This must be the name
of a format that is known to LyX (see section 3.1). Use “x” if the template can
handle original files of more than one format. [yX will attempt to interrogate
the file itself in order to deduce its format in this case. This command must
occur exactly once.

Template <id> A unique name for the template. It must not contain substitution
macros (see below).

Transform Rotate|Resize|Clip|Extra This command specifies which transfor-
mations are supported by this template. It may occur zero or more times.
This command enables the corresponding tabs in the external dialog. Each
Transform command must have either a corresponding TransformCommand or
a TransformOption command in the Format section. Otherwise the transfor-
mation will not be supported by that format.

6.2.2 The Format section

Format EIX|PDFELX|PlainText|DocBook The primary document file format that
this format definition is for. Not every template has a sensible representation
in all document file formats. Please define nevertheless a Format section for all
formats. Use a dummy text when no representation is available. Then you can
at least see a reference to the external material in the exported document.

Option <name> <value> This command defines an additional macro $$<name> for
substitution in Product. <value> itself may contain substitution macros. The
advantage over using <value> directly in Product is that the substituted value
of $$<name> is sanitized so that it is a valid optional argument in the document
format. This command may occur zero or more times.

Product <text> The text that is inserted in the exported document. This is actually
the most important command and can be quite complex. This command must
occur exactly once.

Preamble <name> This command specifies a preamble snippet that will be included
in the IXTEX preamble. It has to be defined using PreambleDef ... PreambleDefEnd.
This command may occur zero or more times.

ReferencedFile <format> <filename> This command denotes files that are cre-
ated by the conversion process and are needed for a particular export format. If
the filename is relative, it is interpreted relative to the master document. This
command may be given zero or more times.

40

6.3 The substitution mechanism

Requirement <package> The name of a required IXTEX package. The package is
included via \usepackage{} in the TEX preamble. This command may occur
zero or more times.

TransformCommand Rotate RotationLatexCommand This command specifies that
the built in BTEX command should be used for rotation. This command may
occur once or not at all.

TransformCommand Resize ResizeLatexCommand This command specifies that the
built in KTEX command should be used for resizing. This command may occur
once or not at all.

TransformOption Rotate RotationLatexOption This command specifies that ro-
tation is done via an optional argument. This command may occur once or not
at all.

TransformOption Resize ResizeLatexOption This command specifies that resiz-
ing is done via an optional argument. This command may occur once or not at
all.

TransformOption Clip ClipLatexOption This command specifies that clipping is
done via an optional argument. This command may occur once or not at all.

TransformOption Extra ExtraLatexOption This command specifies that an ex-
tra optional argument is used. This command may occur once or not at all.

UpdateFormat <format> The file format of the converted file. This must be the
name of a format that is known to IxyX (see the Toolsr Preferences:Conversion
dialog). This command must occur exactly once.

UpdateResult <filename> The file name of the converted file. The file name must
be absolute. This command must occur exactly once.

6.2.3 Preamble definitions

The external template configuration file may contain additional preamble definitions
enclosed by PreambleDef ... PreambleDefEnd. They can be used by the templates
in the Format section.

6.3 The substitution mechanism

When the external material facility invokes an external program, it is done on the
basis of a command defined in the template configuration file. These commands can
contain various macros that are expanded before execution. Execution always take
place in the directory of the containing document.

41

6 Including External Material

Also, whenever external material is to be displayed, the name will be produced by
the substitution mechanism, and most other commands in the template definition
support substitution as well.

The available macros are the following:

$8AbsOrRelPathMaster The file path, absolute or relative to the master LyX doc-
ument.

$$AbsOrRelPathParent The file path, absolute or relative to the Ly X document.
$$AbsPath The absolute file path.
$$Basename The filename without path and without the extension.

$$Contents("filename.ext") This macro will expand to the contents of the file
with the name filename.ext.

$$Extension The file extension (including the dot).

$$FName The filename of the file specified in the external material dialog. This is
either an absolute name, or it is relative to the LyX document.

$$FPath The path part of $$FName (absolute name or relative to the IxyyX document).
$$RelPathMaster The file path, relative to the master LyX document.
$$RelPathParent The file path, relative to the IyX document.

$$Sysdir This macro will expand to the absolute path of the system directory. This
is typically used to point to the various helper scripts that are bundled with
LyX.

$$Tempname A name and full path to a temporary file which will be automatically
deleted whenever the containing document is closed, or the external material
insertion deleted.

All path macros contain a trailing directory separator, so you can construct e.g. the
absolute filename with $$AbsPath$$Basename$$Extension.

The macros above are substituted in all commands unless otherwise noted. The
command Product supports additionally the following substitutions if they are en-
abled by the Transform and TransformCommand commands:

$$ResizeFront The front part of the resize command.
$$ResizeBack The back part of the resize command.
$3RotateFront The front part of the rotation command.

$$RotateBack The back part of the rotation command.

42

6.4 Security discussion

The value string of the Option command supports additionally the following substi-
tutions if they are enabled by the Transform and TransformOption commands:

$$C1lip The clip option.

$$Extra The extra option.

$$Resize The resize option.

$$Rotate The rotation option.

You may ask why there are so many path macros. There are mainly two reasons:

1. Relative and absolute file names should remain relative or absolute, respec-
tively. Users may have reasons to prefer either form. Relative names are useful
for portable documents that should work on different machines, for example.
Absolute names may be required by some programs.

2. IXTEX treats relative file names differently than IyX and other programs in
nested included files. For IyX, a relative file name is always relative to the doc-
ument that contains the file name. For IXTEX, it is always relative to the master
document. These two definitions are identical if you have only one document,
but differ if you have a master document that includes part documents. That
means that relative filenames must be transformed when presented to KTEX.
Fortunately LyX does this automatically for you if you choose the right macros.

So which path macro should be used in new template definitions? The rule is not
difficult:

e Use $$AbsPath if an absolute path is required.

e Use $$AbsOrRelPathMaster if the substituted string is some kind of ETEX
input.

e Else use $$Abs0rRelPathParent in order to preserve the user’s choice.

There are special cases where this rule does not work and e.g. relative names are
needed, but normally it will work just fine. One example for such a case is the
command ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pstex_t"
in the XFig template above: We can’t use the absolute name because the copier for
.pstex_t files needs the relative name in order to rewrite the file content.

6.4 Security discussion

The external material feature interfaces with a lot of external programs and does so
automatically, so we have to consider the security implications of this. In particular,
since you have the option of including your own filenames and/or parameter strings

43

6 Including External Material

and those are expanded into a command, it seems that it would be possible to create a
malicious document which executes arbitrary commands when a user views or prints
the document. This is something we definitely want to avoid.

However, since the external program commands are specified in the template con-
figuration file only, there are no security issues if [yX is properly configured with
safe templates only. This is so because the external programs are invoked with the
execvp-system call rather than the system system-call, so it’s not possible to execute
arbitrary commands from the filename or parameter section via the shell.

This also implies that you are restricted in what command strings you can use in
the external material templates. In particular, pipes and redirection are not readily
available. This has to be so if IxX should remain safe. If you want to use some of
the shell features, you should write a safe script to do this in a controlled manner,
and then invoke the script from the command string.

It is possible to design a template that interacts directly with the shell, but since
this would allow a malicious user to execute arbitrary commands by writing clever
filenames and/or parameters, we generally recommend that you only use safe scripts
that work with the execvp system call in a controlled manner. Of course, for use in
a controlled environment, it can be tempting to just fall back to use ordinary shell
scripts. If you do so, be aware that you will provide an easily exploitable security
hole in your system. Of course it stands to reason that such unsafe templates will
never be included in the standard LyX distribution, although we do encourage people
to submit new templates in the open source tradition. But LyX as shipped from the
official distribution channels will never have unsafe templates.

Including external material provides a lot of power, and you have to be careful not
to introduce security hazards with this power. A subtle error in a single line in an
innocent looking script can open the door to huge security problems. So if you do not
fully understand the issues, we recommend that you consult a knowledgeable security
professional or the IyX development team if you have any questions about whether
a given template is safe or not. And do this before you use it in an uncontrolled
environment.

44

	Contents
	1 Introduction
	2 LyX configuration files
	2.1 What's in LyXDir?
	2.1.1 Automatically generated files
	2.1.2 Directories
	2.1.3 Files you don't want to modify
	2.1.4 Other files needing a line or two...

	2.2 Your local configuration directory
	2.3 Running LyX with multiple configurations

	3 The Preferences dialog
	3.1 Formats
	3.2 Copiers
	3.3 Converters

	4 Internationalizing LyX
	4.1 Translating LyX
	4.1.1 Translating the graphical user interface (text messages).
	4.1.1.1 Ambiguous messages

	4.1.2 Translating the documentation.

	4.2 International Keymap Stuff
	4.2.1 The .kmap File
	4.2.2 The .cdef File
	4.2.3 Dead Keys
	4.2.4 Saving your Language Configuration

	5 Installing New Document Classes
	5.1 Installing a new LaTeX package
	5.2 Layouts
	5.2.1 Layout modules
	5.2.2 Supporting new document classes
	5.2.3 A layout for a sty file
	5.2.4 Layout for a cls file

	5.3 Declaring a new text class
	5.3.1 File format
	5.3.2 General text class parameters
	5.3.3 ClassOptions section
	5.3.4 Paragraph Styles
	5.3.5 Floats
	5.3.6 Flex insets and InsetLayout
	5.3.7 Counters
	5.3.8 Font description
	5.3.9 Upgrading old layout files

	5.4 Creating Templates

	6 Including External Material
	6.1 How does it work?
	6.2 The external template configuration file
	6.2.1 The template header
	6.2.2 The Format section
	6.2.3 Preamble definitions

	6.3 The substitution mechanism
	6.4 Security discussion

