LYX's detailed Math manual

by the LYX Team*

Version 1.5.6
July 22, 2008
*If you have comments or error corrections, please send them to the LYX Documentation mailing list: lyx-docs@lists.lyx.org

Contents

1. Introduction 1
2. General Instructions 1
3. Basic Functions 4
3.1. Exponents and Indices 4
3.2. Fractions 4
3.3. Roots 5
3.4. Binomial coefficients 6
3.5. Case differentiations 6
3.6. Negations 7
3.7. Placeholders 7
3.8. Lines 8
3.9. Ellipses 8
4. Matrices 9
5. Brackets and Delimiters 11
5.1. Vertical Brackets and Delimiters 11
5.1.1. Manual Bracket Size 11
5.1.2. Automatic Bracket Size 12
5.2. Horizontal Brackets 13
6. Arrows 14
6.1. Horizontal Arrows 14
6.2. Vertical and diagonal Arrows 15
7. Accents 16
7.1. Accents for one Character 16
7.2. Accents for Operators 16
7.3. Accents for several Characters 17
8. Space 18
8.1. Predefined Space 18
8.2. Variable Space 19
8.3. Space besides inline Formulas 20
9. Boxes and Frames 20
9.1. Boxes with Frame 20
9.2. Boxes without Frame 21
9.3. Colored Boxes 22
9.4. Paragraph Boxes 24
10. Operators 26
10.1. Big Operators 26
10.2. Operator Limits 27
10.3. Binary Operators 28
10.4. Self-defined Operators 29
11. Fonts 30
11.1. Font Styles 30
11.2. Bold Formulas 31
11.3. Font Sizes 31
12. Greek Letters 32
12.1. Small Letters 32
12.2. Big Letters 32
12.3. Bold Letters 33
13. Symbols 33
13.1. Mathematical Symbols 33
13.2. Miscellaneous Symbols 34
13.3. The Euro-Symbol € 34
14. Relations 34
15. Functions 35
15.1. Predefined Functions 35
15.2. Self-defined Functions 36
15.3. Limits 37
15.4. Modulo-Functions 37
16. Special Characters 37
16.1. Special Characters in Mathematical Text 37
16.2. Accents in Text 38
16.3. Minuscule Numbers 39
16.4. Miscellaneous Special Characters 39
17. Formula Styles 40
18. Multiline Formulas 40
18.1. General 40
18.1.1. Line Separation 41
18.1.2. Column Separation 42
18.1.3. Long Formulas 42
18.1.4. Multiline Brackets 43
18.2. Align Environments 44
18.2.1. Standard align Environment 44
18.2.2. Alignat Environment 45
18.2.3. Flalign Environment 45
18.3. Eqnarray Environment 45
18.4. Gather Environment 46
18.5. Multline Environment 46
18.6. Multiline Formula Parts 47
18.7. Text in multiline Formulas 47
19.Formula Numbering 48
19.1. General 48
19.2. Cross-References 48
19.3. Subnumbering 49
19.4. User-defined Numbering 50
19.5. Numbering with Roman Numbers and Letters 51
20.User-defined commands 52
21.Diagrams 54
22.Tips 55
22.1. Chemical Symbols and Equations 55
22.2. Negative Numbers 55
22.3. Comma as Decimal Separator 55
22.4. Physical Vectors 56
22.5. Self-defined Fractions 56
22.6. Canceled Formulas 57
22.7. Formulas in Section Headings 58
22.7.1. Heading without formula in table of contents 58
22.7.2. Heading with formula in table of contents $\sqrt{-1}=\mathrm{i}$ 58
22.8. Formulas in multi-column Text 58
22.9. Formulas with Description of Variables 59
22.10. Upright small Greek Letters 60
22.11. Text Characters in Formulas 60
A. Typographic Advises 62
B. Synonyms 63
References 64
Index 65

1. Introduction

This document explains LYX's math features and is furthermore a collection of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ commands used for mathematical characters and constructs. The explanations are designed for the usage of commands. It is therefore required that you have read the section Mathematical Formulas of the User's Guide.

Most of the characters and many constructs explained in this manual are also accessible via the menu Insert \triangleright Math, or the math toolbar. But everybody who has to write lots of formulas will notice that it is much faster to use commands instead of the math toolbar. Therefore this manual is focused on commands but also mentions the corresponding toolbar buttons when available.
If not specially mentioned the commands are only available within formulas. To be able to use all commands explained in this document, the option Use AMS math package must be used in the document settings (menu Document \triangleright Settings \triangleright Math Options). ${ }^{1}$

This document doesn't list all $\mathcal{A} \mathcal{M}$-math commands ${ }^{2}$ for lucidity reasons.

2. General Instructions

To create an inline formula that is embedded into a text line, press Ctrl-m or the toolbar button $\frac{a+b}{c}$
To create a display style formula that will appear bigger and in an own paragraph, press Ctrl-M.

To change a display style formula to an inline formula, set the cursor into the formula and press Ctrl-M or use the menu Edit \triangleright Math \triangleright Change formula type. The same way is used to change an inline formula to a display style formula.
To display parts of an inline formula in the size of a display style formula, enter the command \displaystyle to a formula. Then a new blue box appears in which the desired formula part is inserted.

Only inline formulas are allowed inside tables.
The math toolbar can be turned on in the menu View \triangleright Toolbars. When you click there on "Math" the toolbar will be shown permanently at the bottom; this state is visualized in the Toolbars menu with a checkmark. When you click in this state again on "Math" in the Toolbars menu, the math toolbar is only shown when the cursor is

[^0]within a formula; this state is visualized by the renaming of the menu entry from "Math" to "Math (auto)".

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode is invoked by pressing the toolbar button T_{E} or by using the menu Insert $\triangleright \mathrm{TeX}$ Code (shortcut Ctrl-I).
To change the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-preamble, use the menu Document \triangleright Settings \triangleright LaTeX Preamble.
To edit matrices, case differentiations, and multiline formulas subsequently, the menus Edit \triangleright Math and Edit \triangleright Rows \& Columns, or the table toolbar can be used. When lines and columns are swapped via the menu, the column or line where the cursor is in is exchanged with the column to the right or the line below, respectively. Is the cursor in the last column or row, the exchange is done with the column to the left or the line above.

To write text in formulas ${ }^{3}$ mathematical text is used. This mode is invoked with the the shortcut Alt-m m or by the insertion of the command \backslash text. The text appears black in LYX and can therefore be distinguished from the other formula parts that appear blue. In the output mathematical text is set upright, in contrary to other formula parts.

Command Scheme

Most of the ETEX-commands for math constructs have the following scheme:

\commandname[optional argument]\{required argument\}

A command starts always with a backslash „\". To omit optional arguments, also omit the associated brackets. The braces around the required arguments are named in this document as $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-braces. If you add in a formula a left brace to a command name, LYX creates automatically a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-brace. In all other cases $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-braces are created in formulas with the command $\backslash\left\{\right.$. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-braces appear red in $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$, in contrary to normal braces that appear blue. In $T_{E X}$-mode no command is needed to get $T_{E X}$-braces. $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-braces don't appear in the output.

When commands without arguments, like commands for symbols are entered in $\mathrm{T}_{\mathrm{E}} \mathrm{X}-$ mode, a space character must always be behind the command to end it. This space doesn't appear in the output. When the space should appear in the output, the space must be followed by a protected space in normal text.

A protected space is inserted with Ctrl-Space.

[^1]
Syntax Explanation

- The symbol ${ }^{4} \sqcup$ denotes a space character to be input.
- An arrow like \rightarrow denotes the usage of the corresponding arrow key on the keyboard.

Used units

Table 1: Used units

Unit	Name / Description
mm	Millimeter
cm	Centimeter
in	Inch $(1 \mathrm{in}=2,54 \mathrm{~cm})$
pt	Point $(72.27 \mathrm{pt}=1 \mathrm{in})$
pc	Pica $(1 \mathrm{pc}=12 \mathrm{pt})$
sp	scaled point $(65536 \mathrm{sp}=1 \mathrm{pt})$
bp	big point $(72 \mathrm{bp}=1 \mathrm{in})$
dd	Didot $(1 \mathrm{dd} \approx 0.376 \mathrm{~mm})$
cc	Cicero $(1 \mathrm{cc}=12 \mathrm{dd})$
ex	Height of letter " x " in the current font
em	width of letter " M " in the current font
mu	math unit $(1 \mathrm{mu}=1 / 18 \mathrm{em})$

[^2]
3. Basic Functions

3.1. Exponents and Indices

Indices are created with an underscore "_" or via the math toolbar button D_{0} exponents with a caret " "" or via the math toolbar button \square^{\square}.

command	Result
$\mathrm{B}^{\wedge} \mathrm{V}$	B_{V}
$\mathrm{~B}^{\wedge} \mathrm{V}$	B^{V}
$\mathrm{~B}^{\wedge}\llcorner\mathrm{A}$	B^{A}

As the caret is in some languages an accent, vowels will be accentuated in this case and not set as exponents ${ }^{5}$. To get in this case exponents, press Space after the caret as in the last example.

3.2. Fractions

Fractions are generated with the command \backslash frac or via the math toolbar button $\frac{\mathrm{a}}{\mathrm{b}}$. The font size is adjusted automatically, depending on whether the fraction is in an inline or display style formula. With the math toolbar button 믐 you can select different fraction types.
With the command \backslash dfrac a fraction can be created that has in any case the size of a display style formula. With \backslash tfrac the fraction appears always with the size of an inline formula. An example:
A line with the fraction $\frac{1}{2}$ that was created with the command \backslash frac.
A line with the fraction $\frac{1}{2}$ that was created with the command \backslash dfrac.

Command	Result
\backslash frac $\lrcorner \mathrm{A} \downarrow \mathrm{B}$	$\frac{A}{B}$
\backslash dfrac $\lrcorner \mathrm{A} \downarrow \mathrm{B}$	$\frac{A}{B}$
\backslash dfrac $\llcorner\mathrm{e} \hat{\mathrm{e}} \backslash$ frac $\llcorner 1 \downarrow 2 \downarrow \downarrow 3$	$\frac{e^{\frac{1}{2}}}{3}$

[^3]For nested fractions the command \backslash cfrac can be used. Here an example:

$$
\begin{array}{cr}
\text { created with } \backslash \text { frac } & \text { created with } \backslash \mathbf{c f r a c} \\
\frac{A}{B+\frac{C+\frac{E}{F}}{D}} & \frac{A}{B+\frac{C+\frac{E}{F}}{D}}
\end{array}
$$

The command for the example above is:
$\backslash \operatorname{cfrac}\{\mathrm{A} \rightarrow \backslash\{\mathrm{B}+\backslash \operatorname{cfrac}\{\mathrm{C}+\backslash \operatorname{cfrac}\{\mathrm{E} \rightarrow \backslash\{\mathrm{F} \rightarrow \rightarrow \backslash\{\mathrm{D}$
$\backslash \mathbf{c f r a c}$ sets the fraction always in the size of a displayed formula, also when it is part of another fraction. \backslash cfrac has the following command scheme:

\backslash cfrac[numerator position]\{numerator\}\{denominator\}

The numerator position can be l, c, or $r . l$ or r aligns the numerator to the left or right, resp. with the fraction stroke. When c or no position is given, the numerator appears centered. These fractions demonstrate the different alignments:

$$
\frac{A}{B+C}, \frac{A}{B+C}, \frac{A}{B+C}
$$

It is often advantageous to combine \backslash cfrac and \backslash frac:

$$
\frac{A}{B+\frac{C+\frac{E}{F}}{D}}
$$

For inline fractions with a sloped fraction stroke you can use the command \backslash nicefrac: 5/31

How to define own fractions where the fraction stroke can be changed, is explained in sec. 22.5.

3.3. Roots

Square roots are created with \backslash sqrt or the math toolbar button $\sqrt{\square}$, all other roots with the command \backslash root or with the math toolbar button $\sqrt[\square]{\square}$.

Command	Result
\backslash sqrt $_{\perp} \mathrm{A}-\mathrm{B}$	$\sqrt{A-B}$
\backslash root $_3 \downarrow \mathrm{~A}-\mathrm{B}$	$\sqrt[3]{A-B}$

A square root can also be created with \backslash root when the root index field is left empty.
With certain indices the distance to the root is too small, like in this formula: $\sqrt[\beta]{B}$ The β touches the root. To avoid this, the commands \backslash leftroot and \backslash uproot are used with the following scheme:

```
\(\backslash\) leftroot \(\{\) distance \(\}\) and \(\backslash\) uproot \(\{\) distance \(\}\)
```

Distance is the number of Big Points (unit bp; $72 \mathrm{bp}=1 \mathrm{inch}$), that the index should be moved to the left or top, resp.. The commands are written to the index. This way the command
$\backslash \operatorname{root} \backslash$ leftroot $\left\{-1 \rightarrow \backslash\right.$ uproot $\left\{2 \rightarrow \backslash\right.$ beta $_{\sqcup} \rightarrow$ B
produces a correct typeset formula: $\sqrt[\beta]{B}$

3.4. Binomial coefficients

Binomial coefficients are inserted with the command \backslash binom or with the submenu of the math toolbar button 믐.

Command	Result
\backslash binom $_{\llcorner\mathrm{A} \downarrow \mathrm{B}}$	$\binom{A}{B}$
\backslash dbinom $\{\mathrm{A} \rightarrow \backslash\{\mathrm{B}$	$\binom{A}{B}$
\backslash brack $_{\llcorner } \mathrm{A} \downarrow \mathrm{B}$	$\left[\begin{array}{l}A \\ B\end{array}\right]$
\backslash brace $_{\square \mathrm{A} \downarrow \mathrm{B}}$	$\left\{\begin{array}{l}A \\ B\end{array}\right\}$

Analog to fractions (\backslash frac) there are besides \backslash binom the commands \backslash dbinom and \backslash tbinom with the following command scheme:
\backslash dbinom\{numerator\} \{denominator\} and \backslash tbinom\{numerator\}\{denominator\}

3.5. Case differentiations

Command	Result
\backslash cases $\llcorner\mathrm{A} \rightarrow \mathrm{B}>0$	$\begin{cases}A & B>0\end{cases}$
\backslash cases_Ctrl-Enter	$\begin{cases}A & \text { for } x>0 \\ B & \text { for } x=0\end{cases}$

After inserting \cases or the usage of the math toolbar button $\left\{\begin{array}{l}0 \\ \text { you can create }\end{array}\right.$ new lines with the shortcut Ctrl-Return or the table toolbar button
The command \backslash cases is also available via the menu Insert \triangleright Math \triangleright Cases-Environment.

3.6. Negations

By inserting of \backslash not every character can be displayed canceled. The characters are quasi accentuated by a slash.

Command	Result
\backslash not $=$	\neq
\backslash not \backslash le	$\not \subset$
not \backslash parallel	K

The last example shows, that not all negations look good. Therefore there are for some negations special commands (see sec. 13.1 and section 14).

3.7. Placeholders

When displaying e.g. isotopes ${ }^{6}$ the following problem occurs:

$$
\begin{array}{cc}
\text { Indices created with sub- and superscripts: } & { }_{9}^{19} \mathrm{~F} \\
\text { correct indices: } & { }_{9}^{19} \mathrm{~F}
\end{array}
$$

The shorter index is by default placed below or above the first character of the longer index. To avoid this there is the command \backslash phantom or the math toolbar button ${ }^{7}$ That creates one or more phantom characters. When inserting \backslash phantom a small blue box appears that is superposed with two red arrows. The arrows indicate that the complete width and height of the box content will be created as placeholder. Phantom characters are accordingly placeholders with the size of the characters.

Command	Result
${ }^{\wedge} 19 \sqcup \$ phantom ${ }_{\square} 1 \rightarrow 9 _\mathrm{F}$	${ }_{9}^{19} \mathrm{~F}$
${ }^{2} 235 \sqcup$ ¢phantom ${ }_{\llcorner } 23 \rightarrow 9$ F	${ }^{235} \mathrm{~F}$
\backslash Lambda^ \rfloor \phantom ii $^{\text {a }} \mathrm{t}_{\left\llcorner _ \text {MMt }\right.}$	$\Lambda_{M M t}^{t}$

Furthermore there are the commands \backslash vphantom (toolbar button \uparrow. tom (toolbar button $\stackrel{\leftrightarrow}{\square}$). \hphantom creates only space for the maximal height of the characters in the box but not for its width. \vphantom creates only space for

[^4]the width of the box content．Therefore the boxes of both commands have only one red arrow．

For example creates \backslash vphantom $\triangle \mathbf{a} \backslash$ int space for the height of the integral sign，${ }^{8}$ because this is the larger character．An example application is in sec．18．1．4．

3．8．Lines

Command	Result
\overline $\lrcorner \mathrm{A}+\mathrm{B}$	$\overline{A+B}$
\underline $\lrcorner \mathrm{A}+\mathrm{B}$	$\underline{A+B}$
\overline $\lrcorner \backslash$ underline $\lrcorner \mathrm{A}+\mathrm{B}$	$\underline{\overline{A+B}}$

In the last example it doesn＇t matter if first \overline or \underline is inserted． To double underline e．g．results，one uses \underline twice．
It is possible to place up to 6 lines above or below characters．

3．9．Ellipses

There are different types of ellipses available．${ }^{9}$ For listings dots at the baseline are used（ \backslash ldots），while for operations dots are needed that are on the same height as the operators（ \backslash cdots）．When using the command \backslash dots， $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ decides on the basis of the next character what type is used．

Command	Result
	A_{1}, \ldots, A_{n}
A＿1」＋\dots ${ }_{\text {d }}$ A＿n	$A_{1}+\cdots+A_{n}$
A＿1」，··· $\left\llcorner, \mathrm{A} _\right.$n	A_{1}, \ldots, A_{n}
A＿1」＋\cdots $+\mathrm{A} _\mathrm{n}$	$A_{1}+\cdots+A_{n}$
$\backslash \mathrm{vdots}$	：
\backslash ddots	\because
3×3 matrix with the different dots	A_{11} \cdots $A_{1 m}$ \vdots \ddots \vdots $A_{n 1}$ \cdots $A_{n m}$

[^5]The ellipses available in menu Insert \triangleright Special Character are ···.
Specially for matrices there are ellipses that span over several columns. They are created with the command \hdotsfor, that has the following scheme:

\backslash hdotsfor[distance] \{number of columns \}

The number of columns specifies how many columns should be spanned. Distance is a factor for the distance between the dots.

In the following matrix the command \backslash hdotsfor $[2]\{4\}$ was inserted in the first box of the second line, to get an ellipsis with a dot distance twice as long as with the command \backslash dots:

$$
\left(\begin{array}{cccc}
A & B & C & D \\
\cdots & \cdots & \cdots & \cdot \\
q & w & e & r
\end{array}\right)
$$

Note that the matrix fields that should be spanned must be empty, otherwise you get $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$-errors.

Furthermore you can fill with the command \backslash dotfill the rest of a line with dots. The effect of these commands is the same like with \backslash hfill, see sec. 8.2.

For example the command $\mathbf{A} \backslash$ dotfill $_{\sqcup} \mathbf{B}$ produces
A.

Analog to \backslash dotfill there is for a line the command \backslash hrulefill:
A B

To use the commands for text, they have to be inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode.

4. Matrices

Matrices can be inserted via the math toolbar button
 or the menu Insert \triangleright Math \triangleright Matrix. You will be asked for the number of matrix columns and rows, and the alignment. The vertical alignment is hereby only of importance for matrices in inline formulas:
$\left.\begin{array}{l}\text { The first matrix is top } \begin{array}{cccc}A & D & G & J \\ B & E & H & K \\ C & F & I & L\end{array} \text {, the second middle } \begin{array}{cccc}A & D & G & J \\ B & E & H & K \\ C & F & I & L\end{array} \text {, and the } \\ \\ A \\ A\end{array}\right]$

The horizontal alignment specifies how the column entries should be aligned. It is set by entering a letter for every column. l denotes left aligned, c centered, and r right aligned. To create for example a 4×4 matrix where the first column is left aligned, the second and third are centered, and the last one is right aligned, one enters for the horizontal alignment lccr. Normally are in a matrix all columns centered, therefore the default is for every column is a c.

Horizontal alignment:

	10000	D	G		10000	D	G		10000	D	G
111	B	10000	H	, ccc :	B	10000	H	, rrr :	B	10000	H
	C	F	10000		C	F	10000		C	F	10000

To add or delete rows and columns subsequently, the math toolbar buttons, \exists_{x}, etc., or the menu Edit \triangleright Rows \& Columns can be used. New rows can also be created with Ctrl-Return.

Parentheses around a matrix can can either be created with the commands \backslash left and \backslash right (shortcut Alt-m parenthesis), see sec. 5.1.2, or by using the following commands:

Command	Result
\backslash bmatrix $_2 \times 2$ matrix	$\left[\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right]$
\backslash Bmatrix $\llcorner 2 \times 2$ matrix	$\left\{\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right\}$
\backslash pmatrix $\llcorner 2 \times 2$ matrix	$\left(\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right)$

Command	Result	
\backslash vmatrix $\llcorner 2 \times 2$ matrix	$\left\|\begin{array}{cc}0 & -\mathrm{i} \\ \mathrm{i} & 0\end{array}\right\|$	
\backslash Vmatrix $\llcorner 2 \times 2$ matrix	$\|$0 -i i 0$\\|$	
\backslash matrix $\llcorner 2 \times 2$ matrix	0 -i i 0	

When e.g. \vmatrix is inserted, a blue box appears between two vertical lines where the matrix is inserted.

As all multiline formulas are matrices, the length \backslash arraycolsep that is described in sec.18.1.2 can also be used to change the column separation of matrices.

To change the row separation, the command \backslash arraystretch is used. It is used as follows:

```
\renewcommand{\arraystretch}{stretch factor}
```

The command \backslash renewcommand assigns the stretch factor to the predefined command \backslash arraystretch. To double e.g. the row separation, use the factor 2. This is then used for all following matrices. To go back to the original separation, assign the factor 1 to \arraystretch.

To set matrices into a text line, the command \smallmatrix is used. When it is inserted a blue box with two dashed lines appears. In this box the matrix is inserted. This is a matrix $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ in a text line.

5. Brackets and Delimiters

5.1. Vertical Brackets and Delimiters

Command	Result
$($	$($
$\{$	$\{$
$[$	$[$
langle	ζ
\backslash lceil	\lceil
\backslash lfloor	\lfloor
$/$	$/$
l	\vdots

Command	Result	
)	$〕$	
$\}$	$\}$	
\rfloor	\rceil	
rangle	\backslash	
\backslash rceil	\rceil	
\backslash rfloor	\rfloor	
$\backslash \backslash$	\backslash	
\backslash	$\\|$	

Note: In $T_{E X} X$-mode the command \backslash textbackslash must be used for the backslash, because the command $\backslash \backslash$ produces there a line break.

For all characters listed above the size can be adjusted with the commands described in the following two subsections. When using these commands, the characters $<$ and $>$ can directly be used instead of the commands \langle and \rangle.

5.1.1. Manual Bracket Size

The bracket size can be specified manually by the ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$-commands $\backslash \mathrm{big}, \backslash \mathrm{Big}$, \backslash bigg, and \backslash Bigg. \backslash big denotes the smallest and \backslash Bigg the largest bracket size.
These commands are used to emphasize levels of brackets:

$$
\begin{array}{cc}
\text { all brackets in the same size: } & ((A+B)(A-B))^{C} \\
\text { this looks better: } & ((A+B)(A-B))^{C}
\end{array}
$$

For the second formula the command $\backslash \operatorname{Big}((\mathbf{A}+\mathbf{B})(\mathbf{A}-\mathrm{B}) \backslash \mathbf{B i g})^{\wedge} \sqcup \mathbf{C}$ has been used. Here is an overview about all bracket sizes:

$$
\begin{aligned}
& \backslash \operatorname{Bigg}\left(\backslash \exp \backslash \operatorname{bigg}<\backslash \operatorname{Big}\left[\backslash \operatorname{big}\{\backslash \ln (3 \mathrm{x}) \backslash \operatorname{big}\}^{\wedge} 2 \sqcup \backslash \sin (\mathrm{x}) \backslash \operatorname{Big}\right]^{\wedge}\left\llcorner\mathrm{A}_{\lrcorner} \backslash \operatorname{bigg}>\backslash \operatorname{Bigg}\right)^{\wedge} 0,5\right. \\
& \left(\exp \left\langle\left[\{\ln (3 x)\}^{2} \sin (x)\right]^{A}\right\rangle\right)^{0,5}
\end{aligned}
$$

Besides the \backslash big-commands there is the variant \backslash bigm that adds a bit more space between the bracket and its content, and the variant \bigl- \backslash bigr, that don't add additional space. The l at the end of the command \backslash bigl is for a left bracket; for a right bracket this will be replaced by an r. A left or right bracket can each be an opening or closing bracket.

In the following table is a comparison of the variants:

Command	Result
$\backslash \operatorname{Bigm}\left(\backslash \operatorname{bigm}(\backslash \ln (3 \mathrm{x}) \backslash \text { bigm })^{\wedge} 2 \sqcup \backslash\right.$ Bigm $)$	$\left((\ln (3 x))^{2}\right)$
$\backslash \operatorname{Big}\left(\backslash \operatorname{big}(\backslash \ln (3 \mathrm{x}) \backslash \text { big })^{\wedge} 2 \sqcup \backslash \operatorname{Big}\right)$	$\left((\ln (3 x))^{2}\right)$
$\backslash \operatorname{Bigl}\left(\backslash \operatorname{bigl}(\backslash \ln (3 \mathrm{x}) \backslash \text { bigr })^{\wedge} 2 \sqcup \backslash \operatorname{Bigr}\right)$	$\left((\ln (3 x))^{2}\right)$
$\backslash \operatorname{bigl}) \backslash \ln (3 \mathrm{x}) \backslash \operatorname{bigr}($	$) \ln (3 x)($

5.1.2. Automatic Bracket Size

Brackets with variable size can be inserted with the commands \backslash left and \backslash right or via the math toolbar button []]. Directly behind \backslash left and \backslash right the wanted bracket must be inserted. The bracket size will then automatically be calculated for the output.
normal bracket: The command $\backslash \ln \left(\backslash \operatorname{frac}_{\sqcup} \mathbf{A} \downarrow \mathbf{C}_{\sqcup}\right)$ creates

$$
\ln \left(\frac{A}{C}\right)
$$

multiline bracket: The command $\backslash \ln \backslash \operatorname{left}\left(\backslash \operatorname{frac}_{\sqcup} \mathbf{A} \downarrow \mathbf{C}_{\sqcup} \backslash\right.$ right $)$ creates

$$
\ln \left(\frac{A}{C}\right)
$$

Instead of \backslash left and \backslash right the shortcut Alt-m bracket can be used. This has the advantage that you can see in $L_{Y} \mathrm{X}$ immediately the real bracket size and that the matching right bracket will be created too.
The command for the last example would then be: $\backslash \ln$ Alt-m ($\backslash \mathbf{f r a c}_{\sqcup} \mathbf{A} \downarrow \mathbf{C}$
To omit a left or right bracket, a dot is inserted for the omitted bracket. For example the command \backslash left. \backslash frac $_{\sqcup} \mathbf{A} \downarrow \mathbf{B}_{\sqcup} \backslash$ right $\}$ creates:

$$
\left.\frac{A}{B}\right\}
$$

The commands \backslash left and \backslash right will be converted by $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ to brackets in the right size when the document is reloaded and an omitted bracket will appear as dashed line.

Because all popular $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$-Distributions use e $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, an extension to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, the command \backslash middle is additionally available for all brackets and limits. With this command the height of the following character is adapted to the one of the surrounding brackets, what is e.g. needed for physical vectors:

$$
\left\langle\phi \left\lvert\, J=\frac{3}{2}\right., M_{J}\right\rangle
$$

For physical vectors there is a special $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$-package, described in sec.22.4.

5.2. Horizontal Brackets

Command	Result
\backslash overbrace $\llcorner\mathrm{A}+\mathrm{B} \smile \sqcup 3$	$\overbrace{A+B}^{3}$
\backslash underbrace $\left\llcorner\mathrm{A}+\mathrm{B}\left\llcorner _5\right.\right.$	$\underbrace{A+B}_{5}$
	$\overbrace{\underbrace{A+B_{w}}_{7}}^{C}$

In the last example it doesn't matter if \backslash overbrace or \backslash underbrace is inserted at first.

When brackets are needed that overlap each other, multiline formulas, as described in section 18, must be used:

$$
A=\underbrace{g g g g+\underbrace{b b q q}_{s}+d d d d}_{r}
$$

In the first row the formula is inserted together with the first brace. It is hereby important that the space command ${ }^{10} \backslash$: is inserted before the first d, because the brace that ends behind the q prevents that the following " + " is surrounded by space. ${ }^{11}$ In the second row the second brace is inserted. As it should begin before the b, first the command \backslash hphantom $\{\operatorname{gggg}+\backslash:\}$ is inserted. ${ }^{12}$ This space is needed because

[^6]the "+" is also surrounded by space in the formula. The brace is placed under the command \backslash hphantom $\{$ bbqq+dddd $\}$.
It gets more complicated when brackets overlap each other, like in the following example:
$$
A=\underbrace{g g g g+\overbrace{b b q q}+d d d d}_{r} \text { s}
$$

The first formula row is the same as the second row of the previous example, with the difference that the brace is above. The second row contains the formula together with the second brace. To avoid that there is space between the upper brace in the first row and the formula, the row spacing need to be reduced. This is not easily possible due to a bug in $\mathrm{L}_{\mathrm{Y}} \mathrm{X}^{13}$. As solution for the problem, the global formula row separation \backslash jot must be changed to -6 pt before the formula with the command \backslash setlength $\{\backslash$ jot $\}\{-6 \mathrm{pt}\}$ in $\mathrm{T}_{\mathrm{E} X}$-mode. \backslash jot is set back after the formula to the standard value of 3 pt using the same command. More about the row separation in formulas is explained in sec.18.1.1.

6. Arrows

Arrows can be inserted via the math toolbar button \leftarrow or the commands listed in the following subsections.

6.1. Horizontal Arrows

Command	Result
\gets	\leftarrow
\backslash Leftarrow	\Leftarrow
\backslash longleftarrow	\longleftarrow
\backslash Longleftarrow	\Longleftarrow
\backslash leftharpoonup	\leftharpoonup
\backslash leftharpoondown	\leftharpoondown
\backslash hookleftarrow	\hookleftarrow

Command	Result
\leftrightarrow	\leftrightarrow
\backslash Leftrightarrow	\Leftrightarrow
\backslash longleftrightarrow	\longleftrightarrow
पLongleftrightarrow	\Longleftrightarrow
\backslash rightleftharpoons	\rightleftharpoons

[^7]| Command | Result |
| :---: | :---: |
| \to | \rightarrow |
| \backslash Rightarrow | \Rightarrow |
| \backslash longrightarrow | \longrightarrow |
| \backslash Longrightarrow | \Longrightarrow |
| \backslash rightharpoonup | \rightharpoonup |
| \backslash rightharpoondown | \rightharpoondown |
| \backslash hookrightarrow | \hookrightarrow |

Command	Result
\backslash mapsto	\mapsto
\backslash longmapsto	\longmapsto
\backslash leadsto	\rightsquigarrow
\backslash dasharrow	$\rightarrow-$

Arrows used as accent like e. g. vector arrows are listed in section 7.

Furthermore there are the labeled arrows \xleftarrow and \xrightarrow. When inserting one of these commands in a formula, an arrow with two blue boxes appear where the label can be inserted. The length of the arrow adapts to the label width.

Command	Result
$\mathrm{F}(\mathrm{a}) \backslash$ xleftarrow $\llcorner\mathrm{x}=\mathrm{a} \backslash \mathrm{x}>0 \rightarrow \mathrm{~F}(\mathrm{x})$	$F(a) \underset{x=a}{x=0} F(x)$
$\mathrm{F}(\mathrm{x}) \backslash$ xrightarrow $\llcorner\mathrm{x}=\mathrm{a} \downarrow \mathrm{x}>0 \rightarrow \mathrm{~F}(\mathrm{a})$	$F(x) \underset{x>0}{x=a} F(a)$

6.2. Vertical and diagonal Arrows

Command	Result
पuparrow	\uparrow
\backslash Uparrow	\Uparrow
\backslash updownarrow	\uparrow
\backslash Updownarrow	$\widehat{\imath}$
\backslash Downarrow	\Downarrow
\backslash downarrow	\downarrow

Command	Result
\backslash nearrow	\nearrow
\backslash searrow	\searrow
\backslash swarrow	\swarrow
\nwarrow	\nwarrow

Vertical arrows can be used also as delimiter together with the commands described in sec. 5.1.1 and sec. 5.1.2.

7. Accents

Accents can be inserted via the math toolbar button \square or the commands listed in the following subsections.

7.1. Accents for one Character ${ }^{14}$

Command	Result
$\backslash \operatorname{dot}_{\llcorner } \mathrm{A}$	\dot{A}
$\backslash \operatorname{ddot}_{\llcorner } \mathrm{A}$	\ddot{A}
\backslash dddot ${ }_{\text {A }}$	\dddot{A}
\backslash ddddot\{A	\dddot{A}
$\backslash \mathrm{vec} \mathrm{\square}^{\text {A }}$	\vec{A}
$\backslash \mathrm{bar}_{\llcorner } \mathrm{A}$	\bar{A}
\backslash mathring ${ }_{\text {A }}$	\AA

Command	Result
\backslash tilde $_{\sqcup} \mathrm{A}$	\tilde{A}
\backslash hat $_{\llcorner\mathrm{A}}$	\hat{A}
\backslash check $_{\llcorner } \mathrm{A}$	\check{A}
\backslash acute $_{\llcorner } \mathrm{A}$	\grave{A}
\backslash grave $_{\llcorner\mathrm{A}}$	\grave{A}
\backslash breve $_{\llcorner\mathrm{A}}$	\breve{A}

To create umlauts in formulas, a quotation mark is inserted before the vowel. These two characters are then treated by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ as one character when the formula part with the umlaut is marked as German. In contrary to \ddot, with this method "real" umlauts are created as demonstrated in the following example:

Command	Result
"i	\ddot{i}
\backslash ddot $_{\llcorner } \mathrm{i}$	\ddot{i}

Another advantage to \ddot is that umlauts can directly be converted to mathematical text because the accent commands above are not allowed in mathematical text. To convert an accented character to mathematical text, only the character under the accent may be converted. This applies also for all other conversions, e. g. to italic or bold.

In mathematical text, umlauts and other accented characters can directly be inserted.

7.2. Accents for Operators

With the commands \overset and \underset characters can be placed above or below an operator, respectively, to accent it. With the command \sideset characters can be set before and behind an operator. The command scheme is:

[^8]
\backslash sideset \{character before\} \{character behind\}

\backslash sideset must always be before the operator that should be accented. You can accent with several characters and even with other operators and symbols. To place with \sideset for example only characters behind an operator, write nothing between the first braces but don't omit the braces.

For example the command \backslash sideset $\left\{\rightarrow \backslash\left\{{ }^{\prime} \rightarrow \backslash\right.\right.$ sum $_\mathbf{k}=\mathbf{1}{ }^{〔} \mathbf{} \mathbf{n}$ produces:

$$
\sum_{k=1}^{n}
$$

The command \backslash overset $_{\sqcup} \backslash$ maltese ${ }_{\sqcup} \uparrow$ a produces:

$$
\stackrel{a}{2}
$$

As seen in the last example, with \backslash overset and \backslash underset also symbols and characters can be accented; with \backslash sideset this is not possible.

7.3. Accents for several Characters

Command	Result
\overleftarrow $\llcorner\mathrm{A}=\mathrm{B}$	$\overleftarrow{A=B}$
\backslash underleftarrow $\llcorner\mathrm{A}=\mathrm{B}$	$A=B$
\backslash overleftrightarrow $\llcorner\mathrm{A}=\mathrm{B}$	$\overleftarrow{A=B}$
\backslash underleftrightarrow $\llcorner\mathrm{A}=\mathrm{B}$	$A=B$

Command	Result
ไoverrightarrow $\llcorner\mathrm{A}=\mathrm{B}$	$\widetilde{A=B}$
ไunderrightarrow $\llcorner\mathrm{A}=\mathrm{B}$	$\underline{A=B}$
\widetilde $\llcorner\mathrm{A}=\mathrm{B}$	$\widetilde{A=B}$
\backslash widehat $^{\mathrm{A}} \mathrm{A}=\mathrm{B}$	$\widehat{A=B}$

With these commands as many characters as you like can be accented. But the accents \widetilde and \widehat will only be set in the output with a length of three characters, as shown in the following example:

$$
A+\widetilde{B=C}-D
$$

With the commands \backslash overset and \backslash underset described in the previous subsection it is also possible to accent several characters. The command \backslash underset ${ }_{\square} \mathbf{A}=\mathbf{B} \downarrow{ }^{* * *}$ creates:

$$
A \underset{* * *}{=} B
$$

8. Space

8.1. Predefined Space

Sometimes it is necessary to insert horizontal space to a formula. This is done by inserting a protected space (shortcut Ctrl-Space). A blue " \sqcup " appears and by pressing Space several times one can select one of eight different space sizes. The spaces can also be inserted using the math toolbar button $\boldsymbol{\bullet}$ or special commands. Independent from the inserted command, one can select the size again by pressing Space afterwards.

Command	\backslash,	$\backslash:$	$\backslash ;$	\backslash quad	\backslash qquad	$\backslash!$
Number of Space keystrokes after inserting the protected space	0	1	2	3	4	5
Result	$A B$	$A B$	$A B$	A	B	A

The last size seem to produce no space. It is displayed red in $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ contrary to the other sizes, because it is a negative space. There are two more negative spaces:

Command	\backslash negmedspace	\backslash negthickspace
Number of Space keystrokes after inserting the protected space	6	7
Result	$A B$	$A B$

Negative spaces can lead to characters overlapping each other. Thus they can be used to enforce ligatures, what is e.g. useful for summation operators:

Command	Result
\backslash sum \backslash sum $_\mathrm{f}$ _kl	$\sum \sum f_{k l}$
\backslash sum \backslash negmedspace \backslash sum_f_kl	$\sum \sum f_{k l}$

Relations like for example equal signs, are always surrounded by space. To suppress this, the equal sign is placed into a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-brace. The following example demonstrates this:

$$
\begin{array}{cc}
\text { normal equation } & A=B \\
\text { equation without space } & A=B
\end{array}
$$

The command for the last formula is: $\mathbf{A} \backslash\{=\rightarrow \mathbf{B}$

Spaces are needed for physical units, because the space between the value and the unit is the smallest one and not a normal space. For units in text, the smallest space is inserted via the menu Insert \triangleright Formatting \triangleright Thin Space (shortcut Ctrl-Shift-Space).
An example to visualize the difference:
$24 \mathrm{~kW} \cdot \mathrm{~h}$ space between value and unit
$24 \mathrm{~kW} \cdot \mathrm{~h}$ smallest space between value and unit

8.2. Variable Space ${ }^{15}$

Space with a defined length can be inserted in LYX with the command
\backslash hspace\{length \}. For the length all units listed in Table 1 are allowed, except of the unit "mu". The length may also be negative. To insert so many space that the formula uses all available space, the command \backslash hfill is used.

Command	Result		
$\mathrm{A}=\mathrm{B} \backslash$ hspace $\{3 \mathrm{~cm} \rightarrow \mathrm{~A} \backslash$ not $=\mathrm{C}$	$A=B$		$A \neq C$
$\mathrm{~A} \backslash$ hspace $\{-1 \mathrm{~mm} \rightarrow \mathrm{~A} \backslash$ not $=\mathrm{A}$		$A A \neq A$	
$\mathrm{~A}=\mathrm{A} \backslash$ hfill $_\mathrm{B}=\mathrm{B}$	$A=A$		$B=B$

In the last example the available space is given by the longest column entry of the table. In an inline formula the space depends on the length of the line in which \backslash hfill is inserted. Thus, when the line uses the full width, no space will be created. \backslash hfill has only an effect on displayed formulas when the formula style Indented is used. (Formula styles are explained in section 17.)
The commands \backslash hspace and \backslash hfill can also be inserted in $T_{E X} X$-mode to use them for text:

This is a line with $\quad 2 \mathrm{~cm}$ space.
This is a line with maximum space.
In the last example \backslash hfill was inserted via the menu Insert \triangleright Formatting \triangleright Horizontal Fill, what is not possible in formulas. This has the advantage that one can directly see in $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ that this is a stretch space.
When the commands are at the begin of a text line but not at the beginning of a paragraph, they will be ignored by $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$. To avoid that, the command \backslash hspace* is used instead of \backslash hspace. To get the same with \backslash hfill, a line break and an empty placeholder ${ }^{16}$ is inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode with the command \vphantom\{\} before \backslash hfill.

[^9]
8.3. Space besides inline Formulas

The space that surrounds inline formulas can be adjusted with the length \backslash mathsurround. The value of a length is set with the command \setlength that has the following scheme:

```
\setlength{length name}{value}
```

To set \backslash mathsurround to the value 5 mm , the command

```
\setlength {\mathsurround}{5mm}
```

is inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. 5 mm space will now be set around all inline formulas:
This is a line with an inline formula $A=B \quad$ with 5 mm surrounding space.
To return to the predefined value, \backslash mathsurround is set to the value 0 pt .

9. Boxes and Frames

Boxes for text are described in chapter Boxes in the Embedded Objects manual.

9.1. Boxes with Frame

It is possible to frame formulas or parts of it with the commands \backslash fbox and \backslash boxed. When one of these commands is inserted to a formula, a blue box appears within a frame to enter formula parts. For \backslash fbox an additional formula has to be created by Ctrl-m within this box ${ }^{17}$, because the box content will otherwise be treated as mathematical text. When \boxed is used, a new formula is automatically created inside the frame.

The command \backslash fbox is not suitable to frame displayed formulas, because the formula will always be set in the size of the text. \backslash boxed is in contrary not suitable to frame inline formulas, because the formula will always be set in the size of a displayed formula.

As extension to \backslash fbox there is the command \backslash framebox where additionally the frame width and the alignment can be specified. \framebox is used in the following scheme:

\backslash framebox[frame width][position] \{box content \}

The position can either be l or $r . l$ left aligns, r right aligns the formula in the box. When no position is given, the formula will be centered.
Is no width given, also no position can be given. In this case the frame width is adjusted to the box content like for \backslash fbox.

[^10]When the command \backslash framebox is inserted, a box appears containing three blue boxes. The first two boxes are surrounded by brackets and denote the two optional arguments. The third box is for formula parts like for \backslash fbox.

Command ${ }^{\text {a }}$	Result
\backslash fbox \triangle Ctrl-m \backslash int $\downarrow \mathrm{A}=\mathrm{B}$	$\int A=B$
\backslash boxed \backslash int $\llcorner\mathrm{A}=\mathrm{B}$	$\int A=B$
$\mathrm{A}+\backslash$ fbox $^{\text {}}$ B	$A+\mathrm{B}$
\backslash framebox $\llcorner 20 \mathrm{~mm} \rightarrow \rightarrow$ Ctrl-m \backslash frac $\downarrow \mathrm{A} \downarrow \mathrm{B}$	$\frac{A}{B}$

${ }^{a}$ Due to a bug in LYX it is not possible to create a new formula with Ctrl-m, see LYX-bug \#1435.

The frame thickness can also be adjusted. To do this the following commands have to be inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode before the formula

\backslash fboxrule "thickness" \backslash fboxsep "distance"

"distance" specifies the minimal distance between the frame and the first character in the box. An example for this is the following framed formula:

$$
A+B=C
$$

Before this formula the commands

\backslash fboxrule 2 mm \fboxsep 3 mm

were inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. The given values are used for all following boxes.
To return to the standard frame size, the command
\backslash fboxrule 0.4pt \backslash fboxsep 3pt
is inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode before the next formula.

9.2. Boxes without Frame

For boxes without a frame there are the following box commands: \backslash mbox, \backslash makebox, and \raisebox

With \raisebox a box can be super- or subscripted. But in contrary to normal super- and subscripting, the characters in the box keep their font size. \backslash raisebox is used in the following scheme:

\backslash raisebox $\{$ height $\}$ \{box content $\}$

When the box should contain a formula, an extra formula is needed like for \backslash fbox.

Command	Result
$\mathrm{H} \backslash$ raisebox $\{2 \mathrm{~mm} \rightarrow \backslash\{\mathrm{al} \rightarrow \mathrm{lo}$	$H^{\mathrm{al}} l o$
$\mathrm{H} \backslash$ raisebox $\{-2 \mathrm{~mm} \rightarrow \backslash\{$ al $\rightarrow \mathrm{lo}$	$H_{\mathrm{al}} l o$
$\mathrm{~A}=\backslash$ raisebox $\left\{-2 \mathrm{~mm} \rightarrow \backslash\left\{\right.\right.$ Ctrl-m \backslash sqrt $_\mathrm{B}$	$A=\sqrt{B}$

The last formula can currently only be created using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode because LY X inserts a box instead of the needed extra formula. ${ }^{18}$

The command \backslash mbox is equivalent to \backslash fbox and \backslash makebox is equivalent to \backslash framebox, with the difference that there is no frame.

9.3. Colored Boxes

To be able to use all commands explained in this section, the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-package color ${ }^{19}$ has to be loaded in the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-preamble with the line ${ }^{20}$

```
\usepackage{color}
```

To color boxes, the command \backslash colorbox is used in the following scheme:

\backslash colorbox $\{$ color $\}$ \{box content $\}$

The box content can also be a box and a \colorbox can also be part of another box (see the 2nd and 3rd example). When the box should contain a formula, an extra formula has to be created, the same as for \backslash fbox. ${ }^{21}$
One of the following predefined colors can be chosen:
black, blue, cyan, green, magenta, red, white, and yellow

Command	Result
\backslash colorbox $\{$ yellow $\rightarrow \backslash\{\mathrm{A}=\mathrm{B}$	$\mathrm{A}=\mathrm{B}$
\backslash colorbox $\left\{\right.$ green $\rightarrow \backslash\left\{\backslash\right.$ fbox $_{\llcorner\mathrm{A}}=\mathrm{B}$	$\mathrm{A}=\mathrm{B}$
\backslash fbox $_{\llcorner } \backslash$ colorbox $\{$ green $\rightarrow \backslash\{\mathrm{A}=\mathrm{B}$	$\mathrm{A}=\mathrm{B}$

[^11]${ }^{19}$ The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-package color is part of every $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ standard installation.
${ }^{20}$ When text is colored somewhere in the document with a predefined color, LYX loads the LATEXpackage color automatically. Thus it is possible that the package is loaded twice, but this doesn't arise problems.
${ }^{21}$ This also applies for the command \backslash fcolorbox. Thereby note LYX-bug \#1435.
\backslash colorbox only colors the box but not the characters in the box. To color all characters, the whole formula is highlighted and the wanted color is chosen in the Text Style dialog. The dialog can be called with the toolbar button $\mathbf{a} \boldsymbol{b}$ or the menu Edit \triangleright Text Style \triangleright Customized. The formula number has then the same color as the formula. When the formula number should get another color than the formula characters, the color must be changed within the formula.

An example:

$$
\begin{align*}
& \int A=B \tag{1}\\
& \int A=B \tag{2}
\end{align*}
$$

Formula (1) is completely colored red.
Formula (2) was first completely colored green to set the color for the formula number. Subsequently the formula characters were colored red.

To color the frame different than the rest of the box, the command \backslash fcolorbox is used in the following scheme:

\backslash fcolorbox $\{$ frame color $\}$ \{color $\}$ \{box content \}

So \backslash fcolorbox is an extension of the command \backslash colorbox. The frame width is set, like for \backslash framebox, with \backslash fboxrule and \backslash fboxsep. An example:

$A=B$

This formula was created with the command
\backslash fcolorbox $\{$ cyan $\rightarrow \backslash$ magenta $\rightarrow \backslash\{\mathrm{A}=\mathrm{B}$.

To use other colors than the predefined ones, they have to be defined first.
One can for example define the color "darkgreen" with the ETEX-preamble line:

\backslash definecolor $\{$ darkgreen $\}\{$ cmyk $\}\{0.5,0,1,0.5\}$

cmyk is the color space that denotes the colors cyan, magenta, yellow, and black. The four comma separated numbers are the portion factor for the corresponding colors of the color space. The factors can be in the range of $0-1$. Instead of cmyk also the color space rgb can be used for definitions. rgb denotes red, green, and blue, so that there are in this case three portion factors for the corresponding colors. Furthermore there is the color space gray with one portion factor for the gray value.

As example a framed box with the new defined color darkgreen where the characters have been colored yellow:

Self-defined colors can also be used for text with the help of the command \backslash textcolor:
This sentence is "darkgreen".
\backslash textcolor is used in the scheme \backslash textcolor $\{$ color $\}\{$ characters to color $\}$.

9.4. Paragraph Boxes

A box that can contain several lines and paragraphs, a so called paragraph box (parbox), can be created with the menu Insert \triangleright Box or the toolbar button .

The following example shows a framed parbox in a line:
This is a line $\begin{aligned} & \text { This is a paragraph box. } \\ & \text { It is exactly } 5 \mathrm{~cm} \text { long and } \\ & \text { can also contain formulas: } \\ & \int A \mathrm{~d} s=C\end{aligned}$ with a parbox.
Such a box is created by right-clicking on the gray box inset. A dialog pops up showing the box properties. In our case set: Decoration: Recangular box, Inner Box: Parbox, Width: 5 cm , Vertical Box Alignment: Middle

In AT EX a parbox is created with the command \backslash parbox that has the following scheme:

```
\parbox[position]{width}{box content}
```

The positions b and t are possible. b for bottom means that the box is aligned within the surrounding text with its last line. With t for top this is done with the first line. When no position is given, the box will be vertically centered, see section Boxes of the Embedded Objects manual for examples.

To frame formulas completely, including the formula number, the formula must be set into a parbox. To do this, the command \backslash fbox $\{\backslash$ parbox $\{\backslash$ linewidth- $2 \backslash$ fboxsep$2 \backslash$ fboxrule $\}\left\{\right.$ is inserted in $T_{E} X$-mode before the formula. \linewidth is hereby the line width set for the document. Because the frame is outside the parbox, 2 times the frame separation and the frame thickness must be subtracted from the line width. As this is not automatically done by LY_{X} due to a bug^{22}, $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode has to be used.

[^12]To be able to multiply and subtract in arguments, the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-package calc ${ }^{23}$ must be loaded in the $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$-preamble with the line

\backslashusepackage\{calc$\}$undefinedundefined

Behind the formula both boxes are closed by entering $\}\}$ in $T_{E} X$-mode. Here is an example:

As a parbox is used as argument of \backslash fbox, there is in this case no difference between \backslash fbox and \backslash boxed.

Paragraph boxes are very useful to comment formulas directly. To do this, \parbox is used in combination with the command \backslash tag. (more about \backslash tag see sec. 19.4)

An example of a formula commented with \backslash parbox:

$$
5 x-7 b=3 b
$$

This is a description. It is distinctly separated from the formula and multiline.

Such a formula must be inserted completely in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode because LY X does not yet support the command \backslash parbox in formulas. The formula is created with the following command sequence:

The command $\backslash\left[5 \mathrm{x}-\mathbf{7 b}=\mathbf{3 b} \backslash\right.$ tag $* \backslash\left\{\backslash\right.$ parbox $\{\mathbf{5 c m}\}\left\{\right.$ is inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. ${ }^{24}$ Then the description follows as normal text, and finally $\}\} \backslash]$ is inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}-$ mode. The commands $\backslash[$ and $\backslash]$ hereby create a displayed formula.

The advantages of \backslash parbox can be seen in this example that was "commented" using the mathematical textmode:
$5 x-7 b=3 b$ This is a description. It is not separated from the formula \ldots

[^13]
10. Operators

10.1. Big Operators

To be able to use all integral operators listed here, the option Use esint package automatically must be set in the document settings under Math Options.

Command	Result
\backslash sum	\sum
\backslash int	\int
\backslash intop	\int
\backslash oint	\oint
\backslash ointop	\oint
\backslash ointctrclockwise	\oint
\backslash ointclockwise	\oint
\backslash sqint	\oint
\backslash bigcap	\cap
\backslash bigcup	\cup

Command	Result
\backslash prod	Π
\backslash coprod	\amalg
\backslash bigodot	\odot
\backslash bigotimes	\otimes
\backslash bigoplus	\oplus
\backslash bigwedge	\bigwedge
\backslash bigvee	\bigvee
\backslash bigsqcup	\bigsqcup
\biguplus	\biguplus

All big operators can also be inserted via the math toolbar button \int^{\square}.
The operators are called big because they are bigger than the sometimes equal looking binary operators. All big operators can have limits as described in the next subsection.

The operators \backslash intop and \backslash ointop are different from \backslash int and \backslash oint, resp. in the style the operator limits are displayed, see sec.10.2.

Advices for Integrals

The letter d in an integral is an operator, that therefore has to be set upright. This is done by highlighting the d and using the keyboard shortcut Alt-c r^{25}. Finally the smallest space is inserted before the d, as this is usual for operators. An example:
incorrect: $\int A(x) d x$
correct: $\int A(x) \mathrm{d} x$
For multiple integrals there are the following commands:

Command	Result
\backslash iint	\iint
\backslash oiint	\oiint
\backslash sqiint	\oiiint

Command	Result
\backslash iiint	\iiint
\backslash iiiint	$\iiint \int$
\backslash dotsint	$\int \cdots \int$

[^14]
10.2. Operator Limits

Limits are created by super- and subscripts:

Command	Result
$\backslash \operatorname{prod}^{\wedge} \backslash$ infty $\rightarrow _0 \rightarrow \mathrm{~A}(\mathrm{x})$	$\prod_{0}^{\infty} A(x)$

Limits of inline formulas are set right beside the operator. Limits in displayed formulas are set above or below the operator, except of integral limits.
To force that the limits are set beside the operator, the cursor is set directly behind the operator and the limits type is changed with the menu Edit \triangleright Math \triangleright Change Limits Type to Inline (shortcut Alt-m I). An example:

The default limits type is this:

$$
\sum_{x=0}^{\infty} \frac{1}{x^{2}}
$$

This is how it looks when the limits type was changed to Inline:

$$
\sum_{x=0}^{\infty} \frac{1}{x^{2}}
$$

For integrals, except of \intop and \ointop, the limits are by default set beside the operator. But for multiple integrals the limits are often set below the operator. In the following example the limits type was therefore set to Display and so set below the integrals:

$$
\begin{equation*}
\iiint_{V} X \mathrm{~d} V=U \tag{5}
\end{equation*}
$$

To specify conditions for limits, the commands \backslash subarray and \backslash substack are used. To create for example this expression

$$
\begin{equation*}
\sum_{\substack{0<k<1000 \\ k \in \mathbb{N}}}^{n} k^{-2} \tag{6}
\end{equation*}
$$

the following has to be done:
First the command $\backslash \mathbf{s u m}^{\wedge} \mathbf{n}_{\square}$ \qquad is typed in. One is now in a blue box under the summation operator and insert there the command \backslash subarray $_{\sqcup}$. The blue box is now within a purple box and now several lines can be written among each other. A new line is created by inserting a line break (Ctrl-Return). When now $\mathbf{0}<\mathrm{k}<1000$ Ctrl-Return
is typed in, a new box appears below for the new line.

The alignment of the lines can be changed to left aligned with the table toolbar or the menu Edit \triangleright Rows \&Columns. To get right alignment, \backslash hfill \sqcup is inserted at the beginning of the line.

The command \substack is equivalent to \subarray with the difference that the lines are always centered.

Like in formula (6) there can be too much space beside an operator, because the characters following the operator are set beside the limits.

To avoid this, the following macro can be used in the ATEX-preamble:
\backslash def \backslash clap $\# 1\{\backslash$ hbox to 0 pt $\{\backslash$ hss $\# 1 \backslash$ hss $\}\}$
\backslash def \backslash mathclap $\{\backslash$ mathpalette \backslash mathclapinternal $\}$
$\backslash \operatorname{def} \backslash$ mathclapinternal $\# 1 \# 2\{\backslash \operatorname{clap}\{\$ \backslash$ mathsurround $=0$ pt $\# 1\{\# 2\} \$\}\}$
This defines the command \backslash mathclap that sets the width of the limit to 0 pt . The command scheme is

\backslash mathclap $\{$ limit $\}$

where the limit can consist of several conditions.
Applied on formula (6), one uses the command
\backslash sum_\mathclap $\left\{\backslash\right.$ substack ${ }_{\llcorner } 0<\mathrm{k}<1000$ Ctrl-Enter
to create the lower limit. The summand is now directly behind the summation operator:

$$
\sum_{\substack{0<k<1000 \\ k \in \mathbb{N}}}^{n} k^{-2}
$$

How to use one limit for several operators is described in sec.10.4.

10.3. Binary Operators

Binary operators are surrounded by space when there is a character before and behind them.

Command	Result
+	+
-	-
$\backslash \mathrm{pm}$	\pm
$\backslash \mathrm{mp}$	\mp
\backslash cdot	\cdot
\backslash times	\times
\backslash div	\div
$*$	$*$
\backslash star	\star
\backslash circ	\circ
\backslash diamond	\diamond
\backslash bullet	\bullet

Command	Result
\backslash nabla	∇
\backslash bigtriangledown	∇
\backslash bigtriangleup	\triangle
\backslash Box	\square
\backslash cap	\cap
\backslash cup	\cup
\backslash dagger	\dagger
\backslash ddagger	\ddagger
\backslash wr	\imath
\backslash bigcirc	\bigcirc
\backslash wedge	\wedge
\backslash vee	\vee

Command	Result
\oplus	\oplus
\backslash ominus	\ominus
\otimes	\otimes
\backslash oslash	\oslash
oodot	\odot
\backslash amalg	\amalg
\backslash uplus	\uplus
\backslash setminus	\backslash
\backslash sqcap	\sqcap
\backslash sqcup	\sqcup
\backslash triangleleft	\triangleleft
\backslash triangleright	\triangleright

All binary operators can also be inserted via the math toolbar button \pm.
To typeset the Laplace operator also \Delta or \backslash nabla^2 $\left(^{2}\right)$ can be used instead of \bigtriangleup .

The character Menu Separator from the menu Insert \triangleright Special Character is the operator \triangleright.

10.4. Self-defined Operators

With the help of the command \backslash DeclareMathOperator custom operators can be defined in the $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$-preamble. Its command scheme is:

\backslash DeclareMathOperator \{new command\} \{display\}

Display can be characters or symbols that define how the operator looks in the output. To define a big operator a * is set behind the command. All self-defined big operators can have limits as described in sec.10.2.

For example the $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$-preamble line

\backslash DeclareMathOperator* $\{\backslash$ Lozenge $\}\{\backslash$ blacklozenge $\}$

defines the command \backslash Lozenge, that inserts a big operator consisting of the lozenge symbol from sec. 13.2:

The command for this formula is: \backslash Lozenge $\widehat{\text { infty }} \rightarrow _\mathbf{n}=\mathbf{1}$

When self-defined operators are not used several times in the document, they can also be defined with the commands \backslash mathop and \backslash mathbin, which have the following scheme:
\backslash mathop $\{$ display $\}$ and \backslash mathbin $\{$ display $\}$
\backslash mathop defines big operators, \backslash mathbin binary operators.
\backslash mathop can e.g. be used to use one limit for several operators:

$$
\sum_{i, j=1}^{N}
$$

The command for the formula above is:
\backslash mathop $\left\{\backslash\right.$ sum \backslash negmedspace \backslash sum ${ }_{\bullet} \rightarrow \mathbf{N}_{\bullet _i}, \mathbf{j}=1$

11. Fonts

11.1. Font Styles

Latin letters in formulas can be set in one of the following font styles:

Command	Result	shortcut
\backslash mathbb $_{\llcorner\mathrm{ABC}}$	$\mathbb{A B C}$	Alt-c c
\backslash mathbf $_{\llcorner\mathrm{AbC}}$	$\mathbf{A b C}$	Alt-c b
\backslash boldsymbol $_{\llcorner\mathrm{AbC}}$	$\boldsymbol{A b C}$	-
\backslash mathcal $_{\llcorner\mathrm{ABC}}$	$\mathcal{A B C}$	Alt-c e
\backslash mathfrak $_{\llcorner\mathrm{AbC}}$	$\mathfrak{A b C C}$	-

Command	Result	shortcut
\backslash mathit $_{\llcorner\mathrm{AbC}}$	AbC	-
\backslash mathrm $_{\llcorner } \mathrm{AbC}$	AbC	Alt-c r
\backslash mathsf $_{\llcorner\mathrm{AbC}}$	AbC	Alt-c s
\backslash mathtt $_{\llcorner\mathrm{AbC}}$	AbC	Alt-c p

Note: The styles \backslash mathbb and \backslash mathcal can only be used for big letters.
Predefined is the style \backslash mathnormal.
The style commands work also for letters in mathematical constructs:

$$
\mathfrak{A}=\frac{\mathfrak{b}}{\mathfrak{c}}
$$

Characters in mathematical text don't appear in a math font style but in the text font style \textrm. That their style can't be set correctly via the text style dialog is a bug in $\mathrm{LY}_{\mathrm{Y}} \mathrm{X} .{ }^{26}$
Instead of the style commands the dialog Edit \triangleright Math \triangleright Text Style or the toolbar button н $/$ A
AR can be used.

[^15]
11.2. Bold Formulas

To make a complete formula bold, the command \backslash mathbf from the previous subsection cannot be used, because it doesn't work for small Greek letters. Furthermore it prints Latin letters always upright, like in the following equation:

$$
\int_{\mathbf{n}}^{2} \mathbf{f}(\theta)=\boldsymbol{\Gamma} \quad \text { equation with } \backslash \text { mathbf }
$$

To display the formula correctly, the command \backslash boldsymbol is used:

$$
\int_{n}^{2} f(\theta)=\Gamma \quad \text { equation with } \backslash \text { boldsymbol }
$$

It is also possible to set the formula in a boldmath environment. This environment is created by inserting the command \backslash boldmath in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. To end the environment, the command \unboldmath is inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode.

$$
\int_{n}^{2} f(\theta)=\Gamma \quad \text { equation in a boldmath environment }
$$

11.3. Font Sizes

For characters in formulas there are, analog to characters in text, the following size commands:

\backslash Huge, \huge, \backslash LARGE, \Large, \large, \normalsize, \small, \backslash footnotesize, \scriptsize, and \tiny

The size produced by the commands depends on the document font size, that corresponds with the command \backslash normalsize. The other commands produce smaller or larger sizes than \backslash normalsize. The font size can however not exceed a certain value. Is for example the document font size 12 pt , the command \Huge switches to the same size as \backslash huge.
A size command is inserted in TEX-mode before the formula and sets the size for all following formula and text characters. To switch back to the initial size, the command \normalsize is inserted behind the formula in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode.
Within a formula the size can only be changed for symbols or letters in mathematical text. To do this, the size command is inserted in mathematical text. All following characters until the end of the mathematical text or until another size command will have the selected size. Two examples:

$$
A=\frac{B}{c} \cdot \mathbf{\Sigma}
$$

Before both formulas the command \backslash huge was inserted. The command for the second formula is:
\backslash maltese $_{\sqcup}$ A Alt-m m \backslash Large $_{\sqcup} \backslash$ maltese $_{\sqcup} \backslash$ textit $_{\sqcup} \mathbf{A} \rightarrow \rightarrow$
Alt-m m \backslash tiny $\sqcup \backslash$ maltese $_{\checkmark} \backslash$ textit $_{\sqcup}$ A
If a symbol cannot be displayed in different sizes, it will always be displayed in the default size.

12. Greek Letters

All Greek letters can also be inserted via the toolbar button α.

12.1. Small Letters

Command	Result
\backslash alpha	α
\backslash beta	β
\backslash gamma	γ
\backslash delta	δ
\backslash epsilon	ϵ
\backslash varepsilon	ε
\backslash zeta	ζ
\backslash eta	η
\backslash theta	θ
\backslash vartheta	ϑ

Command	Result
\backslash iota	ι
\backslash kappa	κ
\backslash varkappa	\varkappa
\backslash lambda	λ
$\backslash \mathrm{mu}$	μ
$\backslash \mathrm{nu}$	ν
$\backslash \mathrm{xi}$	ξ
o	o
$\backslash \mathrm{pi}$	π
\backslash varpi	ϖ
\backslash rho	ρ

Command	Result
\backslash varrho	ϱ
\backslash sigma	σ
\backslash varsigma	ς
\backslash tau	τ
\backslash upsilon	v
\backslash phi	ϕ
\backslash varphi	φ
\backslash chi	χ
\backslash psi	ψ
\backslash omega	ω

How to create upright Greek letters is explained in sec. 22.10.

12.2. Big Letters

Command	Result
\backslash Gamma	Γ
\backslash Delta	Δ
\backslash Theta	Θ
\backslash Lambda	Λ
$\backslash \mathrm{Xi}$	Ξ
$\backslash \mathrm{Pi}$	Π

Command	Result
\backslash Sigma	Σ
\backslash Upsilon	Υ
\backslash Phi	Φ
\backslash Psi	Ψ
\backslash Omega	Ω

That the big Greek letters appear upright is caused by a design bug when $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ was developed. To get correct italic big letters, begin every command with var. For example the command \backslash varGamma produces: Γ

12.3. Bold Letters

Greek letters cannot be set with different font styles like Latin letters. They can only be made bold with the command \backslash boldsymbol.

Command	Result
\Upsilon\boldsymbol\Upsilon	$\Upsilon \Upsilon$
\backslash theta \backslash boldsymbol \backslash theta	$\theta \boldsymbol{\theta}$

13. Symbols ${ }^{27}$

Many of the symbols listed in this section can also be inserted via the toolbar buttons ∇ and F.

13.1. Mathematical Symbols

Command	Result
\backslash neg	\neg
$\backslash \mathrm{Im}$	\Im
\backslash Re	\Re
\backslash aleph	\aleph
\backslash partial	∂
\backslash infty	∞
\backslash wp	\wp
\backslash imath	\imath
\backslash jmath	\jmath

Command	Result
\backslash forall	\forall
\backslash exists	\exists
\backslash nexists	\nexists
\backslash emptyset	\emptyset
\backslash varnothing	\varnothing
\backslash dag	\dagger
\backslash ddag	\ddagger
\backslash complement	\complement
\backslash Bbbk	\mathbb{k}

Command	Result
\backslash prime	\prime
\backslash backprime	\nearrow
\backslash mho	\mho
\backslash triangle	\triangle
\backslash angle	\measuredangle
\backslash measuredangle	\measuredangle
\backslash sphericalangle	\varangle
\backslash top	\top
\backslash bot	\perp

[^16]
13.2. Miscellaneous Symbols

Command	Result	Command	Result	Command	Result
\backslash flat	b	\backslash hbar	\hbar	\backslash diamondsuit	\diamond
\backslash natural	\square	\backslash hslash	\hbar	\backslash Diamond	\diamond
\backslash sharp	\#	\backslash clubsuit	\%	\backslash heartsuit	\bigcirc
\backslash surd	\checkmark	\backslash spadesuit	¢	$\backslash \mathrm{P}$	\uparrow
\backslash checkmark	\checkmark	\backslash bigstar	\star	\copyright	©
\backslash yen	$¥$	\blacklozenge	\checkmark	\backslash circledR	(B)
\backslash pounds	\$	\blacktriangle	-	\maltese	\%
\$	\$	\blacktiangledown	∇	\backslash diagup	/
§	§	\backslash bullet	-	\backslash diagdown	\backslash

More symbols are listed in sec.16.4.
Some symbols can be displayed in different sizes, see sec.11.3.

13.3. The Euro-Symbol €

To use the Euro symbol in formulas, the m{ET}_{\mathrm{E}}\mathrm{X}\)-packageeurosymmustbeinstalledandloadedwiththe$\mathrm{ET}_{\mathrm{E}}\mathrm{X}$-preambleline\usepackage[gennarrow]\{eurosym\}TheEurosymbolcannowbeinsertedwiththecommand\backslasheuro.TheEurosymbolcandirectlybeinsertedwiththe$€$keyinmathematicaltext,withouthavingeurosyminstalled.Wheneurosymisinstalled,\eurocanalsobeinsertedin$\mathrm{T}_{\mathrm{E}}\mathrm{X}$-mode.Theofficialcurrencysymbolcanthenbeinsertedwiththecommand\officialeuro,thatisonlyavailablein$\mathrm{T}_{\mathrm{E}}\mathrm{X}$-mode.undefined

An overview about the different Euro symbols:

	Command	Result
formula	leuro	$€$
mathematical text	$€$	$€$
$\mathrm{~T}_{\mathrm{E}} \mathrm{X}$-mode	\officialeuro	$€$

14. Relations

All relations can also be inserted via the toolbar button \leq.

Command	Result
$<$	$<$
\backslash le	\leq
\backslash ll	\ll
\backslash prec	\prec
\backslash preceq	\preceq
\backslash subset	\subset
\backslash subseteq	\subseteq
\backslash sqsubseteq	\sqsubseteq
\backslash in	\in
\backslash vdash	\vdash
\backslash smile	\smile
\backslash lhd	\triangleleft
\backslash unlhd	\unlhd
\backslash gtrless	\gtrless
\backslash mid	\backslash
\backslash nmid	\dagger

Command	Result
$=$	$=$
\backslash not $=$	\neq
\backslash equiv	\equiv
\backslash sim	\sim
\backslash simeq	\simeq
\backslash approx	\approx
\backslash cong	\cong
\backslash bowtie	\bowtie
\backslash notin	\notin
\backslash perp	\perp
\backslash propto	\propto
\backslash asymp	\asymp
\backslash doteq	\doteq
\backslash circeq	\doteq
\backslash models	\models
\backslash widehat $=$	$\widehat{=}$

Command	Result	
$>$	$>$	
\backslash ge	\geq	
\backslash gg	\gg	
\backslash succ	\succ	
\backslash succeq	\succeq	
\backslash supset	\supset	
\backslash supseteq	\supseteq	
\backslash sqsupseteq	\sqsupseteq	
\backslash ni	\ni	
\backslash dashv	\dashv	
\backslash frown	\frown	
\backslash rhd	\triangleright	
\backslash unrhd	\unrhd	
\backslash lessgtr	\lessgtr	
\backslash parallel	$\\|$	
\backslash nparallel	\nmid	

The characters \backslash lhd and \backslash rhd are bigger than the equal looking operators \backslash triangleleft and \triangleright, respectively.

Relations are, in contrary to symbols, always surrounded by space.
Relations with labels can be created with the command \stackrel:

Command	Result
$\mathrm{A}(\mathrm{r}) \backslash$ stackrel $\left\llcorner\mathrm{r} \backslash\right.$ to \backslash infty $_{\lrcorner \downarrow \backslash \text { approx }_{\lrcorner\llcorner\cup \mathrm{B}}}$	$A(r){ }^{r \rightarrow \infty} \mathrm{\sim}$

15. Functions

15.1. Predefined Functions

In general, variables are set italic in mathematical expressions, but not function names, because \sin could be misunderstood as $s \cdot i \cdot n$. Therefore there are predefined functions, that are additionally a bit separated from prefactors. They are inserted as commands starting with a backslash before their name.

Command	Result	Command	Result
$\mathrm{A} \sin (\mathrm{x})+\mathrm{B}$	$A \sin (x)+B$	$\mathrm{~A} \backslash \sin (\mathrm{x})+\mathrm{B}$	$A \sin (x)+B$

The following functions are predefined:

Command	Command	Command	Command
$\backslash \sin$	$\backslash \sinh$	$\backslash \arcsin$	\backslash sup
$\backslash \cos$	$\backslash \cosh$	$\backslash \arccos$	\backslash inf
$\backslash \tan$	\backslash tanh	$\backslash \arctan$	$\backslash \lim$
$\backslash \cot$	$\backslash \operatorname{coth}$	$\backslash \arg$	$\backslash \liminf$
$\backslash \sec$	$\backslash \min$	$\backslash \operatorname{deg}$	$\backslash \limsup$
$\backslash \csc$	$\backslash \max$	$\backslash \operatorname{det}$	$\backslash \operatorname{Pr}$
$\backslash \ln$	$\backslash \exp$	$\backslash \operatorname{dim}$	\backslash hom
$\backslash \mathrm{lg}$	$\backslash \log$	\backslash ker	\backslash gcd

They can also be inserted with the math toolbar button \exp

15.2. Self-defined Functions

To use a function that is not predefined, like for example the sign function $\operatorname{sgn}(\mathrm{x})$, there are two possibilities:

- Define the function by inserting the following line to the $\mathrm{ET}_{\mathrm{E}} \mathrm{E}_{\mathrm{X}}$-preamble ${ }^{28}$
\backslash DeclareMathOperator $\{\backslash$ sgn $\}\{s \mathrm{sgn}\}$
Now the new defined function can be called with the command \backslash sgn.
- Write the the formula as usual, mark the formula name, in our example the letters sgn, and change it to mathematical text. At last a space is inserted between prefactor and function.

The result is the same with both methods as with a predefined function ${ }^{29}$:

Command	Result
$\mathrm{A} \backslash \operatorname{sgn}(\mathrm{x})+\mathrm{B}$	$A \operatorname{sgn}(x)+B$
$\mathrm{~A} \backslash, \underbrace{\operatorname{sgn}}_{\mathrm{Alt}-\mathrm{m} \mathrm{m}}(\mathrm{x})+\mathrm{B}$	$A \operatorname{sgn}(x)+B$

The first method is more suitable when the self-defined function should be used several times.

[^17]
15.3. Limits

For limits there are defined besides $\backslash \lim , \backslash \liminf$ and \backslash limsup furthermore the following functions:

Command	Result
\varliminf	$\underline{\text { lim }}$
\backslash varlimsup	¢m
\varprojlim	$\underline{l m}$
\backslash varinjlim	$\xrightarrow{\text { lim }}$

The limit is created by inserting a subscript. It is set right beside the function in an inline formula:

$$
\begin{array}{cc}
\text { Command } & \text { Result } \\
\backslash \lim _{_\mathrm{x} \backslash \operatorname{to~}_{\square} \mathrm{A}_{\llcorner\mathrm{x}=\mathrm{B}}} & \lim _{x \rightarrow A} x=B
\end{array}
$$

In a displayed formula the limit is set below the formula, as usual:

$$
\lim _{x \rightarrow A} x=B
$$

15.4. Modulo-Functions

The modulo-function is special, because it exists in four variants.
The variants in a displayed formula:

Command	Result
$\mathrm{a} \backslash$ mod ${ }^{\text {b }}$	$a \bmod b$
$\mathrm{a} \backslash$ pmod $\llcorner\mathrm{b}$	$a(\bmod b)$
$\mathrm{a} \backslash \mathrm{bmod}\lrcorner \mathrm{b}$	$a \bmod b$
$\mathrm{a} \backslash \operatorname{pod}_{\Perp} \mathrm{b}$	$a \quad(b)$

In an inline formula less space is set before the function names for all variants.

16. Special Characters

16.1. Special Characters in Mathematical Text

The following commands can only be used in mathematical text or in $T_{E} X$-mode:

Command	Result
$\backslash \mathrm{oe}$	\propto
$\backslash \mathrm{OE}$	E
$\backslash \mathrm{ae}$	$æ$
$\backslash \mathrm{AE}$	$Æ$
$\backslash \mathrm{aa}$	a
$\backslash \mathrm{AA}$	\AA
$\backslash \mathrm{i}$	1

command	Result
\o	\varnothing
$\backslash \mathrm{O}$	\emptyset
$\backslash 1$	ł
\L	も
! ${ }^{\text {¢ }}$	i
? ${ }^{\text {¢ }}$	¿
\j	J

The characters \AA and \varnothing can also be inserted via the math toolbar button ${ }^{F}$.
An exception are the commands !‘ and ?‘, because they can be inserted in LY_{X} directly to text.

16.2. Accents in Text

With the following commands all letters can be accented. The commands must be inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode.

Command	Result
\backslash "e	ë
$\backslash{ }^{\prime} \mathrm{e}$	è
$\backslash\llcorner\mathrm{e}$	e
$\backslash=\mathrm{e}$	$\overline{\mathrm{e}}$
$\backslash \mathrm{u}\llcorner\mathrm{e}$	e
$\backslash \mathrm{b}\llcorner\mathrm{e}$	$\underline{\mathrm{e}}$
$\backslash \mathrm{t}\llcorner\mathrm{ee}$	ee

Command	Result
$\backslash \mathrm{H}_{\llcorner } \mathrm{e}$	e̋
$\backslash ' \mathrm{e}$	é
$\backslash \sim \mathrm{e}$	\tilde{e}
$\backslash . \mathrm{e}$	è
$\backslash \mathrm{v}\llcorner\mathrm{e}$	ě
$\backslash \mathrm{d}\llcorner\mathrm{e}$	e
$\backslash \mathrm{c}\llcorner\mathrm{e}$	e

With the command $\backslash \mathbf{t}$ also two different characters can be accented. The command $\backslash \mathbf{t}_{\llcorner\mathbf{S Z}}$ creates: sz

The accents ‘, ', and ^can in combination with vowels directly be inserted with the keyboard without using $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. The same applies for the tilde ${ }^{30} \sim$ in combination with a, n, or o.

The commands $\backslash \mathbf{b}, \backslash \mathbf{c}, \backslash \mathbf{d}, \backslash \mathbf{H}, \backslash \mathbf{t}, \backslash \mathbf{u}, \backslash \mathbf{v}$, and accents inserted directly with the keyboard are also available in mathematical text. For the other accents there are special math commands to be used in formulas, see sec.7.1.

Furthermore, with the command \backslash textcircled all numbers and letters can be set into a circle, quasi accented with a circle, similar to the copyright symbol.

[^18]| Command | Result |
| :---: | :---: |
| ไtextcircled $\{\mathrm{w}\}$ | \mathbb{W} |
| \backslash Large \backslash textcircled $\{\backslash$ normalsize \backslash protect \backslash raisebox $\{-1.5 \mathrm{pt}\}\{\mathrm{W}\}\}$ | $\boxed{ }$ |

One has to take care that the character fits in the circle. \backslash Large ${ }^{31}$ specifies thereby the size of the circle. With the help of \backslash raisebox ${ }^{32}$ the character can be centered.

16.3. Minuscule Numbers

Minuscule numbers are created with the command \oldstylenums. The command can be used in formulas and in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. The command scheme is:
\oldstylenums\{number\}
The command \oldstylenums\{0123456789 produces: 0123456789

16.4. Miscellaneous Special Characters

The following characters can only be inserted to formulas by using commands:

Command	Result
\^	^
\}	-
${ }_{\square} \backslash$ circ	-

The degree sign ${ }^{\circ}$ can nevertheless be directly inserted if the $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$-preamble contains the following line ${ }^{33}$:

\backslash DeclareInputtext $\{176\}\left\{\backslash\right.$ ifmmode ${ }^{\wedge} \backslash$ circ \backslash else \backslash textdegree \backslash fi $\}$

The tilde is designed as accent, thus is looks alone a bit misplaced: ~
But for web addresses (URLs) sometimes a single tilde is needed. In this case the relation sign $\backslash \operatorname{sim}^{34}$ is used in a formula. As a formula cannot be created in an URL-box (menu Insert \triangleright URL), the URL is inserted as normal text with the font style 'typewriter'. Should the URL be a hyperlink in the DVI- or PDF-output, the command \backslash href 35 is used.

[^19]As example an URL with a tilde:
as text: http://www.lyx.org/~mustermann
with \href: http://www.lyx.org/~mustermann

17. Formula Styles

- There are two different alignment styles:

Centered is the predefined standard
Indented for this the option fleqn must be inserted in the menu Documentø Settings under Document Class

When Indented is used, the indentation can be adjusted with the length \backslash mathindent. Should the distance be 15 mm , the following command line is inserted in the $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$-preamble

\backslash setlength $\{\backslash$ mathindent $\}\{15 \mathrm{~mm}\}$

When no length is specified, the predefined value of 30 pt will be used.

- And two different numbering styles:

Right is the predefined standard
Left for this the option leqno must be inserted in the menu Document \triangleright Settings under Document Class
fleqn and leqno can also be used together. In this case both options are inserted, separated by a comma.
The chosen styles are used for all displayed formulas of the document. When both, centered and indented formulas should be created in a document, the style Centered is used. The indented formulas are then set in a flalign environment, see sec. 18.2.3.

18. Multiline Formulas

18.1. General

In LYX multiline formulas are created by pressing Ctrl-Return inside a formula. This creates either an eqnarray environment that is described in sec. 18.3 or, when the option Use AMS math package in the document settings is selected, an align environment that is described in sec. 18.2.1.

There are other multiline formula environments that can be created via the menu Insert \triangleright Math. These environments are described in the following sections.

In all multiline formula environments a new line is created by pressing Ctrl-Return. To add or delete lines, the math toolbar buttons or \exists_{x}, respectively, or the menu Edit \triangleright Rows \& Columns can be used.

18.1.1. Line Separation

There is sometimes not enough space in multiline formulas between the lines:

$$
\begin{aligned}
B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right)+4 x_{0}^{2} x^{2}+4 x_{0} x D & =-4 x^{2} B^{2}+4 x_{0} x B^{2} \\
4 x^{2}\left(B^{2}+x_{0}^{2}\right)+4 x_{0} x\left(D-B^{2}\right)+B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right) & =0
\end{aligned}
$$

In ${ }^{2} T_{E} X$ additional line space is specified as optional argument of the new line command. This is not yet possible in $\mathrm{L}_{Y} \mathrm{X}^{36}$, therefore the whole formula must be inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. To add in our example space, the command $\backslash \backslash[3 \mathrm{~mm}]$ is inserted at the end of the first line. One gets:

$$
\begin{aligned}
B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right)+4 x_{0}^{2} x^{2}+4 x_{0} x D & =-4 x^{2} B^{2}+4 x_{0} x B^{2} \\
4 x^{2}\left(B^{2}+x_{0}^{2}\right)+4 x_{0} x\left(D-B^{2}\right)+B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right) & =0
\end{aligned}
$$

To set the the line separation for all lines in a formula, the length \backslash jot is changed. The definition is: line separation $=6 \mathrm{pt}+\backslash$ jot. Predefined for \backslash jot is the value 3 pt . To create 3 mm additional line separation as in the previous example, the command

```
\setlength{\jot }{3mm}+3\textrm{pt}
```

is inserted in $T_{E X} \mathrm{X}$-mode before the formula. This requires that the $\mathrm{L}_{\mathrm{E}} \mathrm{T} \mathrm{X}$-package calc ${ }^{37}$ was loaded in $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-preamble with the line

\usepackage\{calc\}undefined

One gets:

$$
\begin{aligned}
B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right)+4 x_{0}^{2} x^{2}+4 x_{0} x D & =-4 x^{2} B^{2}+4 x_{0} x B^{2} \\
4 x^{2}\left(B^{2}+x_{0}^{2}\right)+4 x_{0} x\left(D-B^{2}\right)+B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right) & =0
\end{aligned}
$$

To get back to the predefined distance, \backslash jot is set to the value 3 pt .

[^20]
18.1.2. Column Separation

Multiline formulas form a matrix. A formula in the eqnarray environment is for example a matrix with three columns. By changing the column separation in this environment, the space beside the relation sign can be changed.

The column separation is specified with the length \backslash arraycolsep according to: column separation $=2 \backslash$ arraycolsep
Thus, the command

```
\setlength{\arraycolsep}{1cm}
```

inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode, sets for all following formulas a column separation of 2 cm . To get back to the predefined distance, \backslash arraycolsep is set to 5 pt .

A formula with 2 cm column separation:

A		
C	\neq	B
		A

A formula with the predefined column separation for matrices of 10 pt :

$$
\begin{aligned}
& A=B \\
& C \neq A
\end{aligned}
$$

18.1.3. Long Formulas

Long formulas can be typeset using these methods:

- When one side of the equation is much shorther than the line width, this one is chosen for the left side and the right side is typeset over two lines:

$$
\begin{align*}
H= & W_{S B}+W_{m v}+W_{D}-\frac{\hbar^{2}}{2 m_{0}} \Delta-\frac{\hbar^{2}}{2 m_{1}} \Delta_{1}-\frac{\hbar^{2}}{2 m_{2}} \Delta_{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{R}_{1}\right|} \\
& -\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{R}_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{R}_{1}-\mathbf{R}_{2}\right|} \tag{7}
\end{align*}
$$

The minus sign at the beginning of the second line does normally not appear as operator because it is the first character of the line. Thus it would not be surrounded by space and could not be distinguished from the fraction bar. To avoid this, space was inserted behind the minus sign with the command \backslash hspace $\{3 \mathrm{pt}\}^{38}$.

[^21]- When both sides of the equation are too long, the command \backslash lefteqn is used. It is inserted to the first column of the first line and effects that all further insertions overwrite the following columns:

$$
\begin{gather*}
4 x^{2}\left(B^{2}+x_{0}^{2}\right)+4 x_{0} x\left(D-B^{2}\right)+B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right)+D^{2} \\
\quad-B^{2}-2 B \sqrt{r_{g}^{2}-x^{2}+2 x_{0} x-x_{0}^{2}}+r_{g}^{2}-x^{2}+2 x_{0} x-x_{0}^{2} \\
\quad=B^{2}+2\left(r_{g}^{2}+2 x_{0} x-x_{0}^{2}-r_{k}^{2}\right)+\frac{\left(r_{g}^{2}+2 x_{0} x-x_{0}^{2}-r_{k}^{2}\right)^{2}}{B^{2}} \tag{8}
\end{gather*}
$$

After the insertion of \backslash lefteqn, the cursor is in a purple box that is a bit shifted to the left from the blue one. In this the formula is inserted.

The content of the further lines is inserted to the second or another formula column. The greater the column number where it was inserted, the larger the indentation.

Note the following when using \lefteqn:

* The formula doesn't use the full page width. When e.g. the term $-B^{2}$ is added to the first line in the above example, it would have been outside the page margin. To better use the width, negative space can be inserted at the beginning of the first line.
* Due to a bug in $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ the cursor cannot be set with the mouse into the first line. ${ }^{39}$ One can only set the cursor at the beginning of the line and move it with the arrow keys.
- Other methods to set long formulas are offered by the environments described in sec. 18.5 and sec. 18.6.

18.1.4. Multiline Brackets

For brackets spanning multiple lines the following problem occurs:

$$
\begin{aligned}
A= & \sin (x)\left[\prod_{R=1}^{\infty} \frac{1}{R}+\cdots\right. \\
& \cdots+B-D]
\end{aligned}
$$

The closing bracket is smaller than the opening bracket because brackets with variable size may not span multiple lines.

[^22]To set the bracket size for the second line correctly, the first line is ended with \backslash right. and the second line with \backslash left. ${ }^{40}$. After \backslash left. the command \backslash vphan$\operatorname{tom}_{\lrcorner} \backslash \operatorname{prod}^{\wedge} \sqcup$ infty $\left.\sqcup \downarrow \mathbf{R}=1\right\}$ is inserted, because the multiplication operator with its limits is the largest symbol in the first line and this should be the size for the bracket in the second line.

The result is this:

$$
\begin{gathered}
A=\sin (x)\left[\prod_{R=1}^{\infty} \frac{1}{R}+\cdots\right. \\
\cdots+B-D]
\end{gathered}
$$

18.2. Align Environments

Align environments can be used for every kind of multiline formulas. They are specially useful to set several formulas side by side.

Align environments consist of columns. The odd columns are right aligned, the even ones left aligned. Every line in an Align environment can be numbered.

Align environments are created via the menu Insert \triangleright Math. With the menu Edit \triangleright Math \triangleright Change Formula Type already existing formulas can be converted to Align environments.
 menu Edit \triangleright Rows \& Columns can be used.

18.2.1. Standard align Environment

This Align environment is created by presssing Ctrl-Return in a formula or by the menu Insert \triangleright Math \triangleright AMS align Environment.

An example for two formulas set side by side, that are created with a four column align environment:

$$
\begin{array}{ll}
A=\sin (B) & C=D \\
C \neq A & B \neq D
\end{array}
$$

As it can be seen, the formulas in this environment are placed so as if there would be a \backslash hfill ${ }^{41}$ before the first and after every even column. When the formula style Indented ${ }^{42}$ is used, the formula is set without the \backslash hfill before the first column.

[^23]
18.2.2. Alignat Environment

The alignat environment has no predefined column separation. It can be inserted manually with the spaces that are described section 8 .

The above example in the alignat environment where 1 cm space was inserted at the beginning of the second formula:

$$
\begin{array}{ll}
A=\sin (B) & C=D \\
C \neq A & B \neq D
\end{array}
$$

Because the column separation can be set separately for every column, this environment is especially suitable to set three and more formulas side by side.

18.2.3. Flalign Environment

In this environment the first two columns are always set as much as possible to the left and the last two ones to the right. An example:

$$
\begin{array}{lll}
A=1 & B=2 & C=3 \\
X=-1 & Y=-2 & Z=4
\end{array}
$$

By creating a flalign environment with an odd number of columns where an empty $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-brace is inserted to the last column, several formulas in a document can be set to the left, although the formula style Centered is used. As example the indented formula (5):

$$
\begin{equation*}
\iiint_{V} X \mathrm{~d} V=U \tag{9}
\end{equation*}
$$

The first two columns contain the formula. To indent it as with the formula style Indented, 30 pt space was inserted at the beginning of the first column.

18.3. Eqnarray Environment

When this environment has been created, three blue boxes appear. The content of the first box is right aligned, the content of the last one left aligned. The content of the middle box appears centered and a bit smaller, because it is designed to insert there only relation characters.

$$
\begin{array}{ccc}
\frac{A B C}{D} & \frac{A B C}{D} & \frac{A B C}{D} \\
A B & A B & A B \\
A & = & A
\end{array}
$$

18.4. Gather Environment

This environment consists of only one centered column. Every line can be numbered.

$$
\begin{align*}
A & =1 \tag{10}\\
X & =-1 \tag{11}
\end{align*}
$$

18.5. Multline Environment

The multline environment consists, like the gather environment, of only one column. But the first line is left aligned, the last one right aligned. All other lines are centered. Therefore this environment is suitable for long formulas. As example formula (8) in the multline environment:

$$
\begin{align*}
& 4 x^{2}\left(B^{2}+x_{0}^{2}\right)+4 x_{0} x\left(D-B^{2}\right)+B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right)+D^{2} \\
&-B^{2}- 2 B \sqrt{r_{g}^{2}-x^{2}+2 x_{0} x-x_{0}^{2}}+r_{g}^{2}-x^{2}+2 x_{0} x-x_{0}^{2} \\
&=B^{2}+2\left(r_{g}^{2}+2 x_{0} x-x_{0}^{2}-r_{k}^{2}\right)+\frac{\left(r_{g}^{2}+2 x_{0} x-x_{0}^{2}-r_{k}^{2}\right)^{2}}{B^{2}} \tag{12}
\end{align*}
$$

In the output only the last (first) line of a multline environment appears numbered when the document numbering is right (left). ${ }^{43}$
With the commands \shoveright and \shoveleft a centered line can be right or left aligned, respectively. The commands are used as follows:

\backslash shoveright $\{$ line content $\}$ and \backslash shoveleft $\{$ line content $\}$

The length \backslash multlinegap specifies the distance of the first line from the left page margin. Predefined is the length 0 pt .

As example the above formula where the command

\backslash setlength $\{\backslash$ multlinegap $\}\{2 \mathrm{~cm}\}$

was inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode before:

$$
\begin{align*}
& 4 x^{2}\left(B^{2}+x_{0}^{2}\right)+4 x_{0} x\left(D-B^{2}\right)+B^{2}\left(B^{2}-2 r_{g}^{2}+2 x_{0}^{2}-2 r_{k}^{2}\right)+D^{2} \\
& -B^{2}-2 B \sqrt{r_{g}^{2}-x^{2}+2 x_{0} x-x_{0}^{2}}+r_{g}^{2}-x^{2}+2 x_{0} x-x_{0}^{2} \\
& \quad=B^{2}+2\left(r_{g}^{2}+2 x_{0} x-x_{0}^{2}-r_{k}^{2}\right)+\frac{\left(r_{g}^{2}+2 x_{0} x-x_{0}^{2}-r_{k}^{2}\right)^{2}}{B^{2}} \tag{13}
\end{align*}
$$

The second line was left aligned using \backslash shoveleft.

[^24]
18.6. Multiline Formula Parts

To display only parts of a formula with multiple lines, one of the following environments are used: aligned, alignedat, gathered or split. They can be inserted via the menu Insert \triangleright Math or by using the commands described in this section.

The first three have the same properties as the corresponding multiline formula environments, but it is possible to set further formula parts beside them. An example:

$$
\left.\begin{array}{l}
\Delta x \Delta p \geq \frac{\hbar}{2} \\
\Delta E \Delta t \geq \frac{\hbar}{2}
\end{array}\right\} \text { Uncertainty relations }
$$

To get this formula, a displayed formula is created where the command \backslash aligned is inserted. A purple box appears around the blue formula box where now columns and lines can be added. Outside the multiline environment other formula parts can be set, like the brace.

The aligned environment is also suitable for long formulas whose lines are horizontally aligned. Using aligned in a displayed formula has the advantage that the formula number is vertically centered behind the lines. As example formula (7) in the aligned environment:

$$
\begin{align*}
H= & W_{S B}+W_{m v}+W_{D}-\frac{\hbar^{2}}{2 m_{0}} \Delta-\frac{\hbar^{2}}{2 m_{1}} \Delta_{1}-\frac{\hbar^{2}}{2 m_{2}} \Delta_{2}-\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{R}_{1}\right|} \\
& -\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{R}_{2}\right|}+\frac{e^{2}}{4 \pi \varepsilon_{0}\left|\mathbf{R}_{1}-\mathbf{R}_{2}\right|} \tag{14}
\end{align*}
$$

To use the environments alignedat, gathered, or split, the command \backslash alignedat, \backslash gathered, or \backslash split are inserted, respectively. The split environment has the same properties as the aligned environment but it can only have two columns.

18.7. Text in multiline Formulas

In the Align environments, and the multline and gather environment, text can be inserted that will appear in a separate line and doesn't affect the column alignment. To do this, the command \intertext is used in the following scheme:

\intertext $\{$ text $\}$

The text should not be longer than a line because it cannot be hyphenated. As $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ doesn't yet support \backslash intertext directly, the text is written as mathematical text. \intertext must hereby be at the beginning of a line and appears in the output
above this line. An example where the text was inserted at the beginning of the second line:

$$
\begin{equation*}
I=a \sqrt{2} \int_{0}^{2 \pi} \sqrt{1+\cos (\phi)} \mathrm{d} \phi \tag{15}
\end{equation*}
$$

integrand is symmetric to $\phi=\pi$, therefore

$$
\begin{equation*}
=2 a \sqrt{2} \int_{0}^{\pi} \sqrt{1+\cos (\phi)} \mathrm{d} \phi \tag{16}
\end{equation*}
$$

19. Formula Numbering

19.1. General

Numbered formulas can be created with the menu Insert \triangleright Math \triangleright Numbered Formula (shortcut Ctrl-Alt n). Existing formulas can be numbered with the menu Edit \triangleright Math \triangleright Toggle Numbering (shortcut Alt-m n). The formula number is displayed in LYX behind the formula as number sign in parentheses. The number sign is replaced in the output by the formula number.

When numbering is turned on in multiline formulas, all lines will be numbered. But the numbering can be controlled with the menu Edit \triangleright Math \triangleright Toggle Numbering of Line (shortcut Alt-m N) for every line.

Except of inline formulas, all formulas can be numbered with two different styles, see section 17.

19.2. Cross-References

All labeled formulas can be cross-referenced. A label is added by the menu Insert \triangleright Label or the toolbar button 会. The cursor must hereby be inside a displayed formula. A dialog pops up displaying the prefix eq: in a text field. The label is inserted there behind the prefix. The predefined prefix means "equation" and makes it easier to find labels in large documents because it marks it as formula label to divide it from e. g. section labels. To change a label, the menu Insert \triangleright Label is used again.

The name of the label is displayed in LY_{X} within two parentheses behind formula. A formula with a label is always numbered.

Cross-references are inserted via the menu Insert \triangleright Cross-Reference or with the toolbar button A formula cross-reference appears in the output as formula number. When in the cross-reference dialog window the format (<reference \rangle) is chosen, the cross-reference appears in the output as formula number in parentheses.

By right-clicking on a cross-reference in $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$, one jumps to the formula that is referenced.

Here are as examples cross-references to formulas of the following subsections:
The equations (something) and (17b) are equivalent. In (W) big Latin letters are used for the numbering in contrary to (XXI).

When the argument of $\backslash \boldsymbol{t a g}^{44}$ contains a box like in sec. 9.4, the formula cannot be referenced.

19.3. Subnumbering

With the help of the commands \begin\{subequations\} and \end\{subequations\} } formulas can be subnumbered. Both commands are inserted in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode.

An example:

$$
\begin{align*}
& A=C-B \tag{17}\\
& B=C-A \tag{17a}\\
& C=A+B \tag{17b}
\end{align*}
$$

To create the example, the following is done:

1. first formula is inserted
2. \backslash addtocounter $\{$ equation $\}\{-1\} \backslash$ begin\{subequations $\}$ is inserted after the first formula
3. second formula is inserted
4. third formula is inserted
5. $\backslash e n d\{$ subequations $\}$ is inserted after the third formula

Every formula between the commands \backslash begin and \backslash end is subnumbered as a, b, c, \ldots For multiline formulas every line will be subnumbered. All subnumbered formulas are treated as one numbered formula. But as every numbered formula increases the counter equation by one, the command \backslash addtocounter is needed to decrease it. Otherwise the formulas (17), (17a), (17b) would be numbered as (17), (18a), (18b).
By inserting the commands in TEX-mode, a space is created between the first two formulas. To revert this -5 mm vertical space is inserted after the command \backslash begin\{subequations\}. When the formula style Indented ${ }^{45}$ is used, -7 mm space is inserted instead.

[^25]Here is an example for a multiline formula where the numbering was turned off for the second line:

$$
\begin{align*}
A & =(B-Z)^{2}=(B-Z)(B-Z) \tag{18a}\\
& =B^{2}-Z B-B Z+Z^{2} \\
& =B^{2}-2 B Z+Z^{2} \tag{18b}
\end{align*}
$$

19.4. User-defined Numbering

With the standard numbering parentheses are set around the formula number. To replace the parentheses for example by vertical bars, the following line is added to the $\mathrm{E}_{\mathrm{E}} \mathrm{T} X$-preamble:

```
\def\tagform@#1{\maketag@@@{|#1|}}
```

To use other characters, the vertical bars besides the $\# \mathbf{1}$ are replaced by one ore more characters. To get only the formula number the vertical bars are omitted.

When there should be an expression of your choice instead of the consecutive formula number in parentheses behind the formula, the command \backslash tag is used:

$$
\begin{equation*}
A+B=C \tag{something}
\end{equation*}
$$

In this example the command \backslash tag \llcorner something was inserted to the formula.
When the command \backslash tag* ${ }^{*}$ something is inserted instead, the star prevents the parentheses around the expression:

$$
A+B=C \quad \text { something }
$$

To restart the formula numbering with new document parts or sections, the following command is used:

```
\@addtoreset{equation}{part}
resp.
\@addtoreset{equation}{section}
```

To be able to use these commands in $T_{E} X$-mode, the "@" character has to be made "active" for $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ using the command \backslash makeatletter. The command \backslash makeatother reverts this. So the command sequence in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode is:

```
\ \text { \makeatletter}
\@addtoreset{equation}{section}
\ \text { makeatother}
```

In the ${ }^{A} T_{E X} X$-preamble \backslash makeatletter and \backslash makeatother can be omitted as they are automatically internally inserted by $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$.

To revert addtoreset,thefileremreset.sty46hastobeloadedinthe$\mathrm{L}^{\mathrm{A}}\mathrm{E}_{\mathrm{E}}\mathrm{X}$preamblewiththeline\usepackage\{remreset\}Thenthecommand\@removefromresetcanbeusedwiththesameschemeas\@addtoreset.undefined

Sometimes formulas should be numbered in the following form:
(section number.formula number)
The formula number should start with every section with " 1 ".
For this case there is the command \backslash numberwithin, which is used with the following scheme:
\backslash numberwithin \{counter\}\{sectioning\}
Counter denotes what kind of numbering is affected, sectioning denotes what number is before the dot.

Thus in our case the following $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-preamble or ERT line is used:
\backslash numberwithin \{equation\} \{section\}
This is the result:

$$
\begin{equation*}
A+B=C \tag{19.19}
\end{equation*}
$$

To number e.g. tables so that the number of the part is the sectioning, \backslash numberwithin $\{$ table $\}$ \{part $\}$ is used.

To go back to the standard numbering or to prevent this kind of numbering when it is defined by the document class, the following command is inserted as ERT or to the $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$-preamble:

```
\renewcommand{\theequation}{\arabic{equation}}
or
\renewcommand{0ble}{\arabic{table}}
```

\backslash numberwithin uses internally the command \backslash @addtoreset, described above, that also needs to be reverted.

19.5. Numbering with Roman Numbers and Letters

Formulas can also be numbered with Roman numbers and Latin letters. To number for example with small Roman numbers, the command

\backslash renewcommand $\{\backslash$ theequation $\}\{\backslash$ roman\{equation $\}\}$

[^26]is inserted before the formula in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. \backslash renewcommand redefines the predefined command \backslash theequation to the command \backslash roman\{equation ${ }^{47}$. equation is the formula counter. When the command \backslash the is used as prefix for a counter, the value of the counter is output as Arabic number. When a formula is numbered, $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ sets internally the command \backslash theequation behind the formula. \backslash roman\{equation\} outputs the counter as small Roman number.

All formulas behind the command \backslash renewcommand are now numbered Roman. To switch to numbering with big Roman numbers, the command is inserted again, but \backslash roman is replaced by \backslash Roman. To "number" with small Latin letters there is the command \backslash alph, for big ones there is the command \backslash Alph.
Note: Only maximal 26 formulas can be numbered with Latin letters in one document.

$$
\begin{gather*}
A=\text { small roman } \tag{xx}\\
B=\text { big Roman } \tag{XXI}\\
C=\text { small Latin } \tag{v}\\
D=\text { big Latin } \tag{W}
\end{gather*}
$$

To switch back to the default numbering, insert the command:
\backslash renewcommand $\{\backslash$ theequation $\}\{\backslash$ arabic $\{$ equation $\}\}$

$$
\begin{equation*}
E=\text { Arabic } \tag{24}
\end{equation*}
$$

As you see, formulas are numbered serially independent from the numbering style. When then numbering should start with " 1 " when the style is changed, new equation counters have to be defined. A description about this can be found in the file Formulanumbering.lyx.

20. User-defined commands

Many $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$-commands are too long to be used frequently. But it is possible to define with the command \backslash newcommand new shorter commands.

The command scheme of \backslash newcommand is:
\backslash newcommand \{new command name\}[number of arguments][optional value]
\{command definition\}

[^27]Note: Assure that the name of the new command is not already used in your document or by $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$-packages that you use. When you for example define the command \backslash le for \backslash Leftarrow, you get an error message because \backslash le is already defined as command for " \leq ".
Note: The names of user-defined commands may only consist of Latin letters.
The number of arguments is an integer in the range 0-9 and specifies how many arguments the new command should have. With the optional value a value for an optional argument can be predefined. When this is done, the first argument of the new command is automatically an optional one.
Here are some examples:

- To define the command $\backslash \mathbf{g r}$ for \backslash Longrightarrow, the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-preamble line is: \backslash newcommand $\{\backslash \mathrm{gr}\}\{\backslash$ Longrightarrow $\}$
- To define the command \us for \underline, the argument (that should be underlined) must be taken into account. For this the preamble line is:
\backslash newcommand $\{\backslash$ us $\}[1]\{\backslash$ underline $\{\# 1\}\}$
The character \# acts as argument placeholder, the $\mathbf{1}$ behind it denotes that it is the placeholder for the first argument.
- For \backslash framebox one can e.g. define the command $\backslash \mathrm{fb}$:
\backslash newcommand $\{\backslash \mathrm{fb}\}[3]\{\backslash$ framebox $\# 1 \# 2\{\$ \# 3 \$\}\}$
The two Dollar signs creates the extra formula needed for \backslash framebox, see sec. 9.1.
- To create a new command for \backslash fcolorbox where the color for the box needn't to be specified, the argument for the color is defined optional:
\backslash newcommand $\{\backslash \mathrm{cb}\}[3][$ white $]\{\backslash$ fcolorbox $\{\# 2\}\{\# 1\}\{\$ \# 3 \$\}\}$
When the color is not specified when using $\backslash \mathbf{c b}$, the predefined color white will be used.
A test of the new defined commands:

Command	Result
$\mathrm{A} \backslash$ gr $\llcorner\mathrm{B}$	$A \Longrightarrow B$
\backslash us $\{\mathrm{ABcd}$	$\underline{A B c d}$
$\backslash \mathrm{fb}\left\{[2 \mathrm{~cm}] \rightarrow \backslash\left\{\rightarrow \backslash \backslash \backslash\right.\right.$ int $_\mathrm{A}=\mathrm{B}$	$\int A=B$
$\backslash \mathrm{cb}\left\{\right.$ red $\rightarrow \backslash\left\{\backslash\right.$ int $_\mathrm{A}=\mathrm{B}$	$\int A=B$
$\backslash \mathrm{cb}[$ green $] \backslash\{$ red $\rightarrow \backslash\{\backslash$ int $\perp \mathrm{A}=\mathrm{B}$	$\int A=B$

21. Diagrams

To create diagrams, the $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$-package amscd ${ }^{48}$ is needed. It is loaded in the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ preamble with the line

\usepackage\{amscd\}

Diagrams visualize relations and look like this:

To get them, the command $\backslash \mathbf{C D}$ is inserted to a formula. A blue box appears with two dashed lines where further commands can be inserted. With Ctrl-Return a new line is created. Horizontal relations are inserted in odd, vertical in even formula lines.
To create the relations there are the following commands:

- $@ \lll$ creates a left arrow, $@ \ggg$ a right arrow, and $@=$ a long equal sign
- @AAA creates an up arrow, @VVV an down arrow, and @| a vertical equal sign
- @. is a placeholder for non-existent relations

All arrows can be labeled as follows:

- Is text inserted between the first and second $<$ or $>$, resp., it is placed above the arrow. When it is inserted between the second and third one, it appears under the arrow.
- When text for vertical arrows is inserted between the first and second A or V, resp., it is placed left beside the arrow. When it is inserted between the second and third one, it appears right beside the arrow. If the text contains an A or V , these letters must be set into a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-brace.
As example a diagram with all possible relations:

The command for this is:

$$
\begin{gathered}
\backslash \mathrm{CD} \sqcup \mathrm{~A} @>\mathrm{j} \gg \mathrm{~B} @ \gg \mathrm{k}>\mathrm{C} @=\mathrm{F} \text { Ctrl-Enter } \\
@ A m A A @ . @ V V \backslash\{V \rightarrow V @ \mid \text { Ctrl-Enter } \\
\mathrm{D} @ \ll \mathrm{j}<\mathrm{E} @>k \gg \mathrm{~F} @=\mathrm{C}
\end{gathered}
$$

[^28]
22. Tips ${ }^{49}$

22.1. Chemical Symbols and Equations

An example text from chemistry:
The SO_{4}^{2-}-ion reacts with two Na^{+}-ions to sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The chemical equation for this is:

$$
2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

This chemical equation can directly be created as formula. To avoid that the symbols appear italic, everything is highlighted and changed by the shortcut Alt-c r to the upright font style. ${ }^{50}$

22.2. Negative Numbers

Negative numbers often look ugly in formulas because the minus sign before the number is set with the same length as the minus operator sign. When writing the negative number in normal text, the minus sign appears correctly.
Thus, the problem disappears when converting the minus sign to mathematical text. An example to visualize the problem:

normal text:	$\mathrm{x}=-2$
formula:	$x=-2$
solution:	$x=-2$

22.3. Comma as Decimal Separator

In (\mathrm{AT}_{\mathrm{E}}\mathrm{X}\)acommainsideaformulaisused,accordingtotheEnglishconvention,asnumbergroupseparator.Sotherewillbespaceaddedbehindallcommasinformulas.Toavoidthis,thecommaishighlightedandchangedtomathematicaltext(shortcutAlt-mm).Touseallformulacommasinthedocumentasdecimalseparator,thefileicomma.sty51isloadedwiththe$\mathrm{ET}_{\mathrm{E}}\mathrm{X}$-preambleline\usepackage\{icomma\}undefined

[^29]
22.4. Physical Vectors

Predefined vectors are offered by the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$-package braket ${ }^{52}$ that is loaded with the ETEX-preamble line

```
\usepackage{braket}
```

The following commands are defined:

Command	Result
\backslash Bra $\{\backslash$ psi	$\langle\psi\|$
$\backslash \operatorname{Ket}\{\backslash$ psi	$\|\psi\rangle$
\backslash Braket $\{\backslash$ psi $\mid \backslash$ phi	$\langle\psi \mid \phi\rangle$

The command \backslash Braket assures that all vertical bars are set in the size of the surrounding brackets:

$$
\left\langle\phi \left\lvert\, J=\frac{3}{2}\right., M_{J}\right\rangle
$$

The effect of \backslash Braket can also be achieved using the command \backslash middle, that is described in sec.5.1.2.

22.5. Self-defined Fractions

To define custom commands for fractions, the command \genfrac is used in the following scheme:
\backslash genfrac $\{$ left bracket $\}$ \{right bracket $\}$ \{fraction bar thickness $\}$ \{style \} \{numerator\}\{denominator\}
The style is a number in the range of $0-3$.

Number	Style (Size)
0	display style formula
1	inline formula
2	small
3	tiny

When no style is given, the size is adjusted to the surrounding environment like for the command \backslash frac.
When no fraction bar thickness is given, the predefined value of 0.4 pt will be used.

[^30]For example, the commands \backslash dfrac and \backslash tbinom from sec. 3.2 are defined with the commands
\backslash newcommand $\{\backslash$ dfrac $\}[2]\{\backslash$ genfrac $\}\}\}\{0\}\{\# 1\}\{\# 2\}\}$
and
\backslash newcommand $\{\backslash$ tbinom $\}[2]\{\backslash \operatorname{genfrac}\{(\})\}\{0 \mathrm{pt}\}\{1\}\{\# 1\}\{\# 2\}\}$
To define a fraction where the fraction bar thickness can be given as optional argument, the following line is inserted to the $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$-preamble:
\backslash newcommand $\{\backslash \operatorname{fracS}\}[3][]\{\backslash \operatorname{genfrac}\}\}\{\# 1\}\}\{\# 2\}\{\# 3\}\}$
A test:
Command $\quad \backslash$ fracS $[1 \mathrm{~mm}] \backslash\{\mathrm{A} \rightarrow \backslash\{\mathrm{B} \quad \backslash \mathrm{fracS}[5 \mathrm{~mm}] \backslash\{\mathrm{A} \rightarrow \backslash\{\mathrm{B}$ A

Result A

B

As one can see, the distance of the numerator and the denominator to the fraction bar is round about three times the bar thickness.

22.6. Canceled Formulas

To cancel formulas or formula parts, the rm{EAT}_{\mathrm{E}}\mathrm{X}\)-packagecancel53hastobeloadedwiththe$\mathrm{IAT}_{\mathrm{E}}\mathrm{X}$-preambleline$\backslash$usepackage[samesize]\{cancel\}Therearefourwaystocancelformulas:undefined

Command	Result
\backslash cancel $\left\{\backslash\right.$ int $^{\text {b }}$ A=B	$\int A=B$
\backslash bcancel $\left\{\backslash\right.$ int $^{\text {A }}$ = ${ }^{\text {B }}$	$J A=B$
\backslash xcancel $\left\{\backslash\right.$ int ${ }_{\text {d }}$ A=B	$I A=B$
\backslash cancelto $\{1 \rightarrow \backslash\{\backslash$ int \downarrow A $=\mathrm{B}$	$\int A=B^{1}$

[^31]\backslash cancelto is especially suitable to visualize the reduction of fractions within formulas:
$$
\frac{\left(x_{0}+b B\right)^{2}}{\left(1+b^{2}\right)^{7^{2}}}=\frac{x_{0}^{2}+B^{2}-r_{g}^{2}}{1+b^{2}}
$$

22.7. Formulas in Section Headings

When formulas are used in section headings, the following has to be taken into account:
When the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-package hyperref is used, PDF-bookmarks are automatically created for every section heading in the table of contents. If a section heading contains formulas, they are incorrectly displayed in the bookmark text, because formulas in bookmarks infringe the PDF conventions.
Both problems can be solved by inserting at the end of the section heading a short title with the menu Insert \triangleright Short Title. Short titles are used as alternative for multiline section headings to keep the table of contents clearly arranged. Only the short title appears in the table of contents and therefore also in the PDF-bookmark.
When formulas should be used in the table of contents but hyperref is used, one can use the following command in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode:

\backslash texorpdfstring \{part $\}$ \{alternative $\}$

Part is the part of the heading that shouldn't appear in the PDF-bookmark. This can be characters, formulas, footnotes, but also cross-references. The alternative is used instead of the part for the bookmark.
Here are two example headings:

22.7.1. Heading without formula in table of contents $\sqrt{-1}=\mathrm{i}$

22.7.2. Heading with formula in table of contents $\sqrt{-1}=i$

In the first heading a short title was used, in the second one \backslash texorpdfstring.
To get the same formatting as for the other headings, the complete heading was set into a boldmath environment ${ }^{54}$.

22.8. Formulas in multi-column Text

Formulas in multi-column text are often too wide to fit into a column and thus need to be set over the whole page width. This is done by using the $\mathrm{I}_{\mathrm{E}} \mathrm{EX}$-package multicol ${ }^{55}$, that is loaded with the $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-preamble line

[^32]
\usepackage\{multicol\}

Note herby that the setting Two-column document in the menu Document \triangleright Settings under Text Layout must not be selected.

Before the multi-column text the command

\backslash begin $\{$ multicols $\}$ \{column number $\}$

is written in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode. The column number is a number in the range of $2-10$. Before the formula the multi-column text is ended by inserting the command
\backslash end\{multicols $\}$
in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$-mode.
Due to the command some space is automatically added before the formula. To revert this, -6 mm vertical space is inserted before the formula. When the formula style Indented ${ }^{56}$ is used, -9 mm space is inserted instead.

As example a multi-column text with a displayed formula:
Das Spektrum wird fouriertransformiert. the Fouriertransformation wird verwendet, um the überlagerten Signale (Netzwerk, Lösungsmittel) zu trennen. Nachdem wir the Phasenverschiebung bestimmen konnten, interessiert uns nun das periment haben wir es with sehr vielen Teilchen zu tun, so that man über alle Phasen integrieren muss. Sei nun S unser normiertes Ausgangssignal and P the Phasenverteilungsfunktion, so ergibt sich the Beziehung Aussehen des Ausgangssignals. Im Ex-

$$
\begin{equation*}
S(t)=S_{0}(t) \int_{-\infty}^{\infty} P(\phi, t) \mathrm{e}^{\mathrm{i} \phi} \mathrm{~d} \phi \tag{25}
\end{equation*}
$$

wobei S_{0} das Signal ohne Gradient rf-Puls beginnt sich the Magnetisierung ist and the Normierungsbedingung zu entfokussieren, wodurch sich das Sig-$\int_{-\infty}^{\infty} P(\phi, t) \mathrm{d} \phi=1$ gilt. Nun dürfen nal zusätzlich abschwächt. Diese Abwir aber nicht the Relaxationsprozess schwächung verläuft exponentiell in Abaußer Acht lassen. Direkt nach the $\pi / 2$ - hängigkeit the so genannten T_{2}-Zeit.

22.9. Formulas with Description of Variables

To describe variables within a formula, like in formula (26), a $2 \times n$ matrix is used with left aligned columns for the n used variables. ${ }^{57}$ To set the description in a smaller size, before the matrix e.g. the command \backslash footnotesize is inserted. ${ }^{58}$

[^33]When the formula style Indented ${ }^{59}$ is used, a \backslash hfill ${ }^{60}$ is inserted before and after the matrix to have the same separation of the matrix from the equation and the side margin.

When the formula style Centered is used, the method described in sec.18.2.3 is used to indent formulas. Formula (26) consists of five columns whereas in the first two columns contain the equation, the third the matrix, and the last one an empty TEX-brace.

$$
F_{A}=\rho \cdot V \cdot g \quad \begin{array}{ll}
\rho & \text { density } \tag{26}\\
V & \text { volume } \\
g & \text { gravitational acceleration }
\end{array}
$$

22.10. Upright small Greek Letters

Most of the math fonts only provide italic small Greek letters. But for symbols of elementary particles like pions and neutrinos, upright Greek letters are needed. The file upgreek.sty ${ }^{61}$ that is loaded with the ${ }^{\mathrm{L}} \mathrm{T}_{E} \mathrm{X}$-preamble line

```
\usepackage{upgreek}
```

provides them. They are created when the command for a small Greek letters is started with up. For example the command \backslash uptau creates this: τ

With these commands reactions of elementary particles can be typeset:

$$
\pi^{+} \rightarrow \mu^{+}+v_{\mu}
$$

The upright letters are more bold and wider than the italic ones. They should therefore not be used for units like " $\mu \mathrm{m}$ ".

22.11. Text Characters in Formulas

In some cases you might want to insert text characters directly into formulas. When for example the centered dot - is often used in formulas like $\nu=5 \cdot 10^{5} \mathrm{~Hz}$, one would have to insert the command $\backslash \boldsymbol{c d o t}^{62}$ all the time, because this character is defined in all encodings as text character. But the encoding can be changed by this $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$-preamble line:
\backslash Declare Inputtext $\{183\}\{\backslash$ ifmmode $\backslash \operatorname{cdot} \backslash$ else \backslash textperiodcentered \backslash fi $\}$

[^34]The character encoding (menu Document \triangleright Settings \triangleright Language) specifies what character appears when a keyboard key is pressed. When the key for the character '. ' is pressed, internally the command \backslash textperiodcentered is used. But this command is not available in a formula so that you would get $\mathrm{ET}_{\mathrm{EX}}$-errors. With the changed encoding the right command is chosen automatically, depending on if the character was inserted into a formula or not.

The encoding of several characters is saved in definition files. Fore example the encoding latin9 is defined in the file latin9.def that is in the installation folder of $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$. Encodings should only be changed via the $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$-preamble and not in the definition files. Otherwise own documents could not be edited by other $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$ users working on other computers.

Besides the centered dot, in this document the degree sign ${ }^{\circ}$ is defined with the following $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$-preamble line so that it can directly be inserted to a formula:

\backslash DeclareInputtext $\{176\}\{\backslash$ ifmmode \backslash circ \backslash else \backslash textdegree \backslash fi $\}$

A. Typographic Advises

This section is a summary of the most important typographic rules, listed in ISO norms. ${ }^{63}$

- Physical units are always set upright ${ }^{64}: 30 \mathrm{~km} / \mathrm{h}$ Between the value and the unit is the smallest space, see sec.8.1.
- Percent and perthousand signs are set like physical units: $1,2 \%$ alcohol in blood
- The degree sign follows directly on the value: 15°, but not when it is used in units: $15^{\circ} \mathrm{C}$
- In numbers with more than four digits the smallest space is inserted before every third digit to group them: 18473588
- For dimensionings like $120 \times 90 \times 40 \mathrm{~cm}$ the multiplication sign " \times " is used. It is available with the ATEX-command \texttimes, but can also directly be inserted with some keyboard definitions.
- Functions with names consisting of several letters are set upright to avoid confusions, see sec.15.1.
- Indices consisting of several letters, are set upright: $E_{\text {kin }}$ Components of matrices are set italic: $\hat{H}_{k l}$
- The differentiation/integration operator 'd', the Euler's number 'e', and the imaginary unit 'i' should be set upright, to avoid mixing them up with other variables.

[^35]
B. Synonyms

Some characters and symbols can be created with several commands. Here is a list of the synonym commands:

Command	equivalent to
\backslash ast	$*$
\backslash choose	\backslash binom
\backslash geq	\backslash ge
\backslash lbrace	$\{$
\backslash lbracket	$[$
\backslash leftarrow	\backslash gets
\backslash leq	\backslash le
\backslash lor	\backslash vee
\backslash neq	\backslash not $=$
\backslash slash	$/$
\backslash vert	\backslash

Command	equivalent to
\backslash backslash	$\backslash \backslash$
\backslash dasharrow	\backslash dashrightarrow
\backslash land	\backslash wedge
\backslash rbrace	$\}$
\backslash rbracket	\rceil
\backslash rightarrow	\backslash to
\backslash lnot	\backslash neg
\backslash ne	\backslash not $=$
\backslash owns	\backslash ni
\backslash square	\backslash Box
\backslash Vert	$\backslash \mid$

References

[1] Mittelbach, F. ; Goossens, M.: The ATEX Companion. Addison Wesley, 2004
[2] Description of $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$'s math abilities
[3] LATEX tips and tricks-page
[4] Description of $\mathcal{A} \mathcal{M} \mathcal{S}$-EATEX
[5] List of all symbols available with $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$-packages
[6] Documentation of the LTEX-package hyperref
[7] Description of the command \mathclap, described in sec. 10.2
[8] Duden Band 1. 22. Auflage, Duden 2001

Index

Å, 38
-, 39
€, 34
Accents, 16
for one character, 16
for operators, 16
for several characters, 17
in text, 38
Arrows, 14
diagonal, 15
horizontal, 14
labeled, 15
vertical, 15
Binomial coefficient s, 6
Boxes, 20
as paragraph, 24
colored, 22
with frame, 20
without frame, 21
Bracket size
automatic, 12
manual, 11
Brackets, 11
for multiline expressions, 43
horizontal, 13
vertical, 11
Case differentiations, 6
Chemical characters
Isotopes, 7
Symbols, 55
Chemical equations, 55
Comma, 55
Commands
©
\backslash @addtoreset, 50
\@removefromreset, 51
A
\addtocounter, 49
\backslash aligned, 47
\alignedat, 47
\backslash alph, 52
\backslash Alph, 52
\arabic, 51, 52
\backslash arraycolsep, 10, 42
\arraystretch, 10
B
\backslash big, 11
\backslash bigl - \backslash bigr, 12
bigm, 12
\binom, 6
\boldmath, 31
\backslash boldsymbol, 33
\backslash boxed, 20
\backslash brace, 6
\backslash brack, 6
C
\CD, 54
ไcases, 6
\backslash cdots, 8
\backslash cfrac, 5
\colorbox, 22
D
\dbinom, 6
\DeclareMathOperator, 29, 36
definecolor, 23
\backslash dfrac, 4
\displaystyle, 1
dotfill, 9
\backslash dots, 8
E
\backslash euro, 34
F
\backslash fbox, 20
\backslash fcolorbox, 23
\backslash frac, 4
\backslash framebox, 20
G
\gathered, 47
\genfrac, 56

H

hdotsfor, 9
\backslash hfill, 19
\backslash hphantom, 7
$\backslash h r e f, 39$
\backslash hrulefill, 9
\backslash hspace, 19, 42
I
\int, 26
\intertext, 47
J
\jot, 14, 41
L
\backslash Idots, 8
\backslash left, 10, 12, 44
\lefteqn, 43
\backslash leftroot, 6
\backslash lim, 37
\backslash linewidth, 24
M
$\backslash m a k e b o x, 21$
mathbin, 29
\mathclap, 28, 64
mathindent, 40
\backslash mathop, 29
\backslash mathsurround, 20
\backslash mbox, 21
\backslash middle, 13
\backslash multlinegap, 46
N
\backslash newcommand, 52
\backslash nicefrac, 5
not, 7
\backslash numberwithin, 51
0
\officialeuro, 34
\oldstylenums, 39
\overbrace, 13
\backslash overline, 8
\backslash overset, 16, 17
P
\backslash parbox, 24
\backslash phantom, 7
\prod, 26

R
\backslash raisebox, 21
\backslash renewcommand, 10, 52
\backslash right, 10, 12, 44
\roman, 52
\backslash Roman, 52
\backslash root, 5
S
\backslash setlength, 20
\backslash shoveleft, 46
\shoveright, 46
\backslash sideset, 16
\backslash smallmatrix, 11
\backslash split, 47
\sqrt, 5
\stackrel, 35
\subarray, 27
\substack, 27
\sum, 26
T
\backslash tag, 50
thbinom, 6
\backslash texorpdfstring, 58
\text, 2
ไtextbackslash, 11
\backslash textcircled, 38
textcolor, 24
˽, 3
\tfrac, 4
U
\unboldmath, 31
\underbrace, 13
\backslash underline, 8
\underset, 16, 17
\uproot, 6
V
\vphantom, 7, 44
X
\xleftarrow, 15
\xrightarrow, 15
Comparisons, see Relations
Cross-references
to formulas, 48

Delimiters, 11
Diagrams, 54
Ellipses, 8
Exponents, 4
Font
size, 31
style, 30
Fonts, 30
Formula
bold, 31
canceled, 57
display style, 1
in multi-column text, 58
in section headings, 58
inline, 1
long, 42
multiline, 40
align environment, 44
alignat environment, 45
Column separation, 42
eqnarray environment, 45
flalign environment, 45
formula parts, 47
gather environment, 46
Line separation, 41
multine environment, 46
text, 47
numbering, see Formula numbering
styles, 40
underlined, 8
with description of variables, 59
Formula numbering, 48
self-defined delimiters, 50
subnumbering, 49
user-defined, 50
with letters, 51
with Roman numbers, 51
Fractions, 4
self-defined, 56
Frames, see Boxes
Functions
modulo-, 37
predefined, 35
self-defined, 36
Greek letters, 32
big, 32
bold, 33
small, 32
upright, 60
Indices, 4
Integrals, 26
lons, see Chemical characters
Isotopes, see Chemical characters
ATEX-preamble, 2
Limits, 37
Lines, 8
Mathematical text, 2
Matrices, 9
Minuscule numbers, 39
Negations, 7
Numbers
negative, 55
Operators, 26
big, 26
binary, 28
Limits, 27
self-defined, 29

Packages

amscd, 54
braket, 56
calc, 25, 41
cancel, 57
carlisle, 51
color, 22
eurosym, 34
hyperref, 39, 58, 64
icomma, 55
multicol, 58
remreset, 51
upgreek, 60
was, 55, 60
Placeholders, 7
Relations, 34
Roots, 5
Space
besides inline formulas, 20
horizontal, 18
predefined, 18
variable, 19
Special characters, 37
miscellaneous, 39
Subscripts, see Indices
Sums, 26
Superscripts, see Exponents
Symbols, 33
chemical, 55
Euro-symbol, 34
mathematical, 33
miscellaneous, 34
Synonyms, 63
TEX-braces, 2
TEX-mode, 2
Text
colored, 24
in formulas, 2, 47, 60
Tilde, 38, 39
Tips, 55
Typographic Advises, 62
Umlauts, 16
User-defined commands, 52
Vectors, 16
physical, 56

[^0]: ${ }^{1}$ The option Use AMS math package automatically only uses $\mathcal{A} \mathcal{M}$-math when math constructs are found that are supported by $\mathrm{L}_{\mathrm{Y}} \mathrm{X}$.
 ${ }^{2} \mathrm{~A}$ list with all $\mathcal{A}_{\mathcal{M} \mathcal{S}}$-math commands is in the file amsguide.ps, which is part of every $\mathrm{EA}_{\mathrm{EX}}$ standard installation.

[^1]: ${ }^{3}$ For multiline formulas the command \backslash intertext is used, see sec.18.7.

[^2]: ${ }^{4}$ This visible space character can be created with the command \backslash textvisiblespace, inserted in TEX-mode.

[^3]: ${ }^{5}$ Depending on the used keyboard settings this can also happen for other characters than vowels.

[^4]: ${ }^{6}$ More about chemical symbols is written in sec. 22.1.
 ${ }^{7}$ can be found in the submenu of the toolbar button ㅂ

[^5]: ${ }^{8}$ The command \backslash int creates an integral sign，see sec．10．1．
 ${ }^{9}$ In the math toolbar in the submenu of the button \cdot ．

[^6]: ${ }^{10}$ Space commands are explained in sec. 8.1.
 ${ }^{11}$ because a bracket is not handled as character, see sec. 10.3
 ${ }^{12}$ more about \backslash hphantom see sec. 3.7

[^7]: ${ }^{13}$ LYX-bug \#1505

[^8]: ${ }^{14}$ accents in text see sec. 16.2

[^9]: ${ }^{15}$ for vertical space in formulas see sec. 18.1.1
 ${ }^{16}$ for placeholders see sec.3.7

[^10]: ${ }^{17}$ Due to a bug in LYX it is not possible to create a new formula with Ctrl-m, see LYX-bug \#1435.

[^11]: ${ }^{18}$ see LYX-bug \#1435

[^12]: ${ }^{22}$ LYX-bug \#4483

[^13]: ${ }^{23}$ calc is part of every $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ standard installation.
 ${ }^{24}$ When the formula style Indented is used, \backslash tag* $\backslash\{$ can also be replaced by \backslash hfill. (formula styles see section 17)

[^14]: ${ }^{25}$ Font styles see sec. 11.1

[^15]: ${ }^{26}$ LYX-bug \#4091

[^16]: ${ }^{27} \mathrm{~A}$ list with all symbols of most of the $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$-packages can be found in [5].

[^17]: ${ }^{28}$ For more about \backslash DeclareMathOperator see sec.10.4.
 ${ }^{29}$ In LYX self-defined functions are displayed red, predefined ones black.

[^18]: ${ }^{30}$ This only applies for keyboards where the tilde is defined as accent.

[^19]: ${ }^{31}$ see sec. 11.3
 ${ }^{32}$ see sec. 9.2
 ${ }^{33}$ More about this is described in sec. 22.11.
 ${ }^{34}$ see section 14
 ${ }^{35} \backslash$ href can only be used together with the $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$-package hyperref. More about \backslash href is written in the section URL in the Embedded Objects manual.

[^20]: ${ }^{36}$ see LYX-bug \#1505
 ${ }^{37}$ calc is part of every $\mathrm{AT}_{\mathrm{EX}}$ standard installation.

[^21]: ${ }^{38}$ more about \backslash hspace see sec. 8.2

[^22]: ${ }^{39}$ LYX-bug \#1429 $^{\prime}$

[^23]: ${ }^{40}$ for more about \backslash left and \backslash right see sec. 5.1.2
 ${ }^{41}$ more about \backslash hfill see sec. 8.2
 ${ }^{42}$ formula styles see section 17

[^24]: ${ }^{43}$ numbering styles see section 17

[^25]: ${ }^{44} \backslash$ tag is described in sec. 19.4.
 ${ }^{45}$ formula styles see section 17

[^26]: ${ }^{46}$ remreset is part of the $\mathrm{L}_{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$-package carlisle that is part of every $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ standard installation.

[^27]: ${ }^{47}$ The command \backslash renewcommand has the same scheme like the command \backslash newcommand that is described in section 20.

[^28]: ${ }^{48} \mathbf{a m s c d}$ is part of every $\mathrm{AT}_{\mathrm{EX}}$ standard installation.

[^29]: ${ }^{49}$ Other useful math tips can be found in [3].
 ${ }^{50}$ font styles see sec. 11.1
 ${ }^{51} \mathbf{i c o m m a}$ is part of the ${ }^{A} T_{E} X$-package was.

[^30]: ${ }^{52}$ braket should be part of every $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ standard installation.

[^31]: ${ }^{53}$ cancel is part of every $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ standard installation.

[^32]: ${ }^{54}$ see sec. 11.2
 ${ }^{55}$ multicol is part of every $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ standard installation.

[^33]: ${ }^{56}$ formula styles see section 17
 ${ }^{57}$ matrices see section 4
 ${ }^{58}$ font sizes see sec.11.3

[^34]: ${ }^{59}$ formula styles see section 17
 ${ }^{60} \backslash$ hfill only works in formulas with the style Indented, see sec. 8.2.
 ${ }^{61}$ upgreek is part of the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$-package was.
 ${ }^{62}$ see sec. 10.3

[^35]: ${ }^{63}$ This collection was partly taken from the German semi-official dictionary called "Duden" [8] that lists some of the ISO rules.
 ${ }^{64}$ done with font styles, see sec. 11.1

