
Customizing LYX: Features for the
Advanced User

by the LYX Team∗

Version 2.4.x

May 13, 2024

∗If you have comments or error corrections, please send them to the LYX Documentation
mailing list, lyx-docs@lists.lyx.org. Include “[Customization]” in the subject header, and
please cc the current maintainer of this file, Richard Kimberly Heck <rikiheck@lyx.org>.

mailto:lyx-docs@lists.lyx.org

Contents
1. Introduction 1

2. LYX configuration files 3
2.1. What’s in LyXDir? . 3

2.1.1. Automatically generated files 3
2.1.2. Directories . 4
2.1.3. Files you don’t want to modify 5
2.1.4. Other files needing a line or two 5

2.2. Your local configuration directory . 5
2.3. Running LYX with multiple configurations 6

3. The Preferences dialog 7
3.1. Formats . 7
3.2. Copiers . 8
3.3. Converters . 9

4. Internationalizing LYX 13
4.1. Translating LYX . 13

4.1.1. Translating the graphical user interface (text messages). . . . 13
4.1.1.1. Ambiguous messages 14

4.1.2. Translating the documentation. 14
4.2. International Keymap Stuff . 15

4.2.1. The .kmap File . 16
4.2.2. The .cdef File . 17
4.2.3. Dead Keys . 18
4.2.4. Saving your Language Configuration 18

5. Installing New Document Classes 19
5.1. Installing new LATEX files . 20
5.2. Types of layout files . 22

5.2.1. Layout modules . 22
5.2.1.1. Local Layout . 23

5.2.2. Layout for .sty files . 23
5.2.3. Layout for .cls files . 25
5.2.4. Creating templates . 25
5.2.5. Upgrading old layout files . 26
5.2.6. Cite engine files . 26

i

Contents

5.3. The layout file format . 26
5.3.1. The document class declaration and classification 27
5.3.2. The Module declaration . 28
5.3.3. The CiteEngine file declaration 29
5.3.4. Format number . 30
5.3.5. General text class parameters 30
5.3.6. ClassOptions section . 35
5.3.7. Paragraph styles . 35
5.3.8. Internationalization of Paragraph Styles 43
5.3.9. Floats . 44
5.3.10. Flex insets and InsetLayout 46
5.3.11. Arguments . 52
5.3.12. Counters . 54
5.3.13. Font description . 55
5.3.14. Cite engine description . 56
5.3.15. Cite format description . 58

5.4. Tags for XHTML output . 62
5.4.1. Paragraph styles . 62
5.4.2. InsetLayout XHTML . 64
5.4.3. Float XHTML . 65
5.4.4. Bibliography formatting . 66
5.4.5. LYX-generated CSS . 66

5.5. Tags for DocBook output . 66
5.5.1. Paragraph styles . 67
5.5.2. New-line policy . 68
5.5.3. InsetLayout DocBook . 68
5.5.4. Float DocBook . 72
5.5.5. Bibliography formatting . 72

6. Including External Material 73
6.1. How does it work? . 73
6.2. The external template configuration files 74

6.2.1. The template header . 75
6.2.2. The Format section . 76
6.2.3. Preamble definitions . 77

6.3. The substitution mechanism . 77
6.4. Security discussion . 80

A. List of supported LYX functions to be used in layouts 81

B. Names of available colors to be used in layouts 83
B.1. Color functions . 83
B.2. Static colors . 83
B.3. Dynamic colors . 84

ii

1. Introduction
This manual covers the customization features present in LYX. In it, we discuss
issues like keyboard shortcuts, screen previewing options, printer options, sending
commands to LYX via the LYX Server, internationalization, installing new LATEX
classes and LYX layouts, etc. We can’t possibly hope to touch on everything you can
change—our developers add new features faster than we can document them—but
we will explain the most common customizations and hopefully point you in the right
direction for some of the more obscure ones.

1

2. LYX configuration files
This chapter aims to help you to find your way through the LYX configuration files.
Before continuing to read this chapter, you should find out where your LYX system
and user directories are by using Help ▷ About LyX. The system directory is the
place where LYX places its system-wide configuration files; the user directory is where
you can place your modified versions. We will call the former LyXDir and the latter
UserDir in the remainder of this document.

2.1. What’s in LyXDir?
LyXDir and its sub-directories contain a number of files that can be used to customize
LYX’s behavior. You can change many of these files from within LYX itself through
the Tools ▷ Preferences dialog. Most customization that you will want to do in
LYX is possible through this dialog. However, many other inner aspects of LYX can
be customized by modifying the files in LyXDir. These files fall in different categories,
described in the following subsections.

2.1.1. Automatically generated files
The files found in UserDir are generated when you configure LYX. They contain
various default values that are automatically detected during reconfiguration. In
general, it is not a good idea to modify them, since they might be overwritten at any
time.

lyxrc.defaults Contains defaults for various commands.

packages.lst Contains the list of packages that have been recognized by LYX. It
is currently unused by the LYX program itself, but the information ex-
tracted, and more, is made available with Help ▷ LATEX Configura-
tion.

textclass.lst The list of text classes that have been found in your layout/ direc-
tories, along with the associated LATEX document class and their descrip-
tion.

lyxmodules.lst The list of layout modules found in your layout/ directories

*files.lst Lists of various sorts of LATEX-related files found on your system

3

2. LYX configuration files

doc/LATEXConfig.lyx is automatically generated during configuration from the file
LATEXConfig.lyx.in. It contains information on your LATEX configuration.

2.1.2. Directories
The following directories in LyXDir can be duplicated in UserDir. If a particular file
exists in both places, the one in UserDir will be used.
bind/ This directory contains files with the extension .bind that define the

keybindings used in LYX. If there exists an internationalized version of
the bind file in a subdirectory bind/xx where “xx” is the ISO language
code, that will be used first.

citeengines/ Contains files with the extension .citeengine which define the di-
verse citation possibilities (natbib, biblatex etc.). See sec. 5.2.6 for details.

clipart/ Contains graphics files that can be included in documents.

doc/ Contains LYX documentation files (including the one you are currently
reading). The file LaTexConfig.lyx deserves special attention, as noted
above. The internationalized help docs are in subdirectories doc/xx where
“xx” is the ISO language code. See chapter 4 for details.

examples/ Contains example files that explain how to use some features. In the file
browser, press the Examples button to get there.

images/ Contains image files that are used by the Document dialog. In addition,
it also contains the individual icons used in the toolbar and the banners
that can be shown when LYX is launched.

kbd/ Contains keyboard keymapping files. See sec. 4.2 for details.

layouts/ Contains the text class and module files described in chapter 5.

lyx2lyx Contains the lyx2lyx Python scripts used to convert between LYX ver-
sions. These can be run from the command line if you want to batch-
convert files.

scripts/ Contains some files that demonstrate the capabilities of the Exter-
nal Template feature. Also contains some scripts used by LYX itself.

templates/ Contains the standard LYX template files described in sec. 5.2.4.

ui/ Contains files with the extension .ui that define the user interface to
LYX. That is, the files define which items appear in which menus and the
items appearing on the toolbar.

xtemplates/ Contains files with the extension .xtemplate which define the tem-
plates for the insertion of external material to a LYX document; see
chapter 6.

4

2.2. Your local configuration directory

2.1.3. Files you don’t want to modify
These files are used internally by LYX and you generally do not need to modify them
unless you are a developer.
CREDITS This file contains the list of LYX developers. The contents are displayed

with the menu entry Help ▷ About LyX.

chkconfig.ltx This is a LATEX script used during the configuration process. Do not
run directly.

configure.py This is a Python script that is used to re-configure LYX. It creates
configuration files in the directory it was run from.

2.1.4. Other files needing a line or two
encodings This contains tables describing how different character encodings can be

mapped to Unicode

languages This file contains a list of all the languages currently supported by LYX.

latexfonts Contains information about the supported fonts.

layouttranslations This file contains translations for internationalized paragraph
styles (see sec. 5.3.8).

unicodesymbols This file contains information about Unicode-encoded glyphs and
the way they are supported by LYX via LATEX.

2.2. Your local configuration directory
Even if you are using LYX as an unprivileged user, you might want to change LYX
configuration for your own use. The UserDir directory contains all your personal
configuration files. This is the directory described as “user directory” in Help ▷
About LyX. This directory is used as a mirror of LyXDir, which means that every file
in UserDir is a replacement for the corresponding file in LyXDir. Any configuration
file described in the above sections can be placed either in the system-wide directory,
in which case it will affect all users, or in your local directory for your own use.

To make things clearer, let’s provide a few examples:
• The preferences set in the Tools ▷ Preferences dialog are saved to a file

preferences in UserDir.

• When you reconfigure using Tools ▷ Reconfigure, LYX runs the configure.py
script, and the resulting files are written in your local configuration directory.
This means that any additional text class file that you might have added in
UserDir/layouts will be added to the list of classes in the Document ▷
Settings dialog.

5

2. LYX configuration files

• If you get some updated documentation from a LYX ftp site and cannot install
it because you do not have sysadmin rights on your system, you can just copy
the files to UserDir/doc/ and the items in the Help menu will open them!

2.3. Running LYX with multiple configurations
The configuration freedom of the local configuration directory may not suffice if you
want to have more than one configuration at your disposal. For example, you may
want to use different key bindings or printer settings at different times. You can
achieve this by having several such directories. You then specify which directory to
use at run-time.

Invoking LYX with the command line switch -userdir <some directory> instructs
the program to read the configuration from that directory, and not from the default
directory. (You can determine the default directory by running LYX without the
-userdir switch.) If the specified directory does not exist, LYX offers to create it
for you, just like it does for the default directory the first time you run the program.
You can modify the configuration options in this additional user directory exactly
as you would for the default directory. These directories are completely independent
(but read on). Note that setting the environment variable LYX_USERDIR_24x to some
value has exactly the same effect.

Having several configurations also requires more maintenance: if you want to add
a new layout to NewUserDir/layouts which you want available from all your config-
urations, you must add it to each directory separately. You can avoid this with the
following trick: after LYX creates the additional directory, most of the subdirectories
(see above) are empty. If you want the new configuration to mirror an existing one,
replace the empty subdirectory with a symbolic link to the matching subdirectory in
the existing configuration. Take care with the doc/ subdirectory, however, since it
contains a file written by the configuration script (also accessible through Tools ▷
Reconfigure) which is configuration specific.

6

3. The Preferences dialog
All options of the preferences dialog are described in the Appendix The Preferences
Dialog in the User’s Guide. For some options you might find here more details.

3.1. Formats
The first step is to define your file formats if they are not already defined. To do so,
open the Tools ▷ Preferences dialog. Under File Handling ▷ File formats
press the New button to define your new format. The Format field contains the
name used to identify the format in the GUI. The Short Name is used to identify the
format internally. You will also need to enter a file extension. These are all required.
The optional Shortcut field is used to provide a keyboard shortcut on the menus.
(For example, pressing Ctrl+D will Document ▷ View (Other Formats) ▷
DVI.)

A Format can have a Viewer and an Editor associated with it. For example, you
might want to use Ghostview to view PostScript files. You can enter the command
needed to start the program in the corresponding fields. In defining this command,
you can use the four variables listed in the next section. The viewer is launched when
you view an image in LYX or use the Document ▷ View menu. The editor is for
example launched when you right-click on an image and choose Edit externally
in the appearing context menu.

The MIME type of a format is optional, but if it is specified, it must be unique
across all formats. It is used to detect files of this format from the file contents.
For some important file formats there is no MIME type officially registered with
the IANA. Therefore LYX uses the extended list of MIME types as specified by
freedesktop.org.

The Document format option tells LYX that a format is suitable for document
export. If this is set and if a suitable conversion route exists (see sec. 3.3), the
format will appear in the File ▷ Export menu. The format will also appear in
the Document ▷ View menu if a viewer is specified for the format. Pure image
formats, such as png, should not use this option. Formats that can both represent
vector graphics and documents like pdf should use it.

The option Vector graphics format tells LYX that a format can contain vector
graphics. This information is used to determine the target format of included graphics
for pdflatex export. Included graphics may need to be converted to either pdf,
png, or jpg, since pdflatex cannot handle other image formats. If an included
graphic is not already in pdf, png, or jpg format, it is converted to pdf if the

7

http://www.iana.org/assignments/media-types/
http://www.freedesktop.org/wiki/Specifications/shared-mime-info-spec

3. The Preferences dialog

vector format option is set, and otherwise to png.

3.2. Copiers
Since all conversions from one format to another take place in LYX’s temporary
directory, it is sometimes necessary to modify a file before copying it to the temporary
directory in order that the conversion may be performed.1 This is done by a Copier:
It copies a file to (or from) the temporary directory and may modify it in the process.

The definitions of the copiers may use eight variables:

$$s The LYX system directory (e. g. /usr/share/lyx).

$$i The input file

$$o The output file

$$b The base name (without filename extension) in the LYX temporary direc-
tory

$$p The full directory path of the LYX temporary directory

$$r The full pathname to the original LYX file being processed

$$f The filename (without any directory path) of the LYX file.

$$l The ‘LATEX name’

The latter should be the filename as it would be used in a LATEX’s \include command.
It is relevant only when exporting files suitable for such inclusion.

Copiers can be used to do almost anything with output files. For example, suppose
you want generated pdf files to be copied to a special directory, /home/you/pdf/.
Then you could write a shell script such as this one:
#!/ bin /bash
FROMFILE=$1
TOFILE=‘basename $2 ‘
cp $FROMFILE /home/you/ pdf /$TOFILE
Save it in your local LYX directory—say, /home/you/.lyx/scripts/pdfcopier.sh—
and make it executable, if you need to do so on your platform. Then, in the
Tools ▷ Preferences dialog, select under File Handling ▷ File formats the
PDF(pdflatex) format—or one of the other pdf formats—and enter pdfcopier.sh
$$i $$o into the Copier field.

Copiers are used by LYX in various of its own conversions. For example, if ap-
propriate programs are found, LYX will automatically install copiers for the HTML

1For example, the file may refer to other files—images, for example—using relative file names, and
these may become invalid when the file is copied to the temporary directory.

8

3.3. Converters

and HTML (MS Word) formats. When these formats are exported, the copier
sees that not just the main HTML file but various associated files (style files, images,
etc.) are also copied. All these files are written to a subdirectory of the directory in
which the original LYX file was found.2

3.3. Converters
You can define your own Converters to convert files between different formats. This
is done in the Tools ▷ Preferences ▷ File Handling ▷ Converters dialog.

To define a new converter, select the From format and To format from the
drop-down lists, enter the command needed for the conversion, and then press the
Add button. Several variables can be used in the definition of converters:

$$s The LYX system directory

$$i The input file

$$o The output file

$$b The base filename of the input file (i. g., without the extension)

$$p The path to the input file

$$r The path to the original input file (this is different from $$p when a chain
of converters is called)

$$e The iconv name for the encoding of the document.

In the Extra Flag field you can enter the following flags, separated by commas:

latex=flavor This converter runs some form of LATEX. This will make LYX’s LATEX
error logs available. The optional flavor value specifies the form of LATEX
that is run (latex, pdflatex, platex, xetex, luatex). If no value
is specified, latex is used.

needauth This converter is considered non-safe and needs authorization by the
user. Depending on the settings in Tools ▷ Preferences ▷ File Handling ▷
Converters, users will (a.) be asked whether they trust the current docu-
ment temporarily, permanently, or not, (b.) be informed that conversion
is not possible due to security concerns, or (c.) not be informed as they
gave permanent consent. Set this flag for converters that might execute
arbitrary programs.

2This copier can be customized. The optional “-e” argument takes a comma-separated list of
extensions to be copied; if it is omitted, all files will be copied. The “-t” argument determines the
extension added to the generated directory. By default, it is “LyXconv”, so HTML generated
from /path/to/filename.lyx will end up in /path/to/filename.html.LyXconv.

9

3. The Preferences dialog

needaux=flavor Needs the LATEX .aux file for the conversion. The optional flavor
value specifies the form of LATEX that is run in order to generate the
.aux file (latex, pdflatex, platex, xetex, luatex). If no value is
specified, latex is used.

nice Needs a “nice” file from the backend, which in practice means a LATEX
file like the one we would export, without input@path.

xml Output is XML.

The following three flags are not really flags at all because they take an argument in
the key = value format:

hyperref-driver The name of the driver that needs to be loaded with the hyperref
package for this converter. The loading of the correct driver is necessary
to get some PDF-specific features. See the hyperref manual for details.

parselog If set, the converter’s standard error will be redirected to a file infile.out,
and the script given as argument will be run as: script < infile.out
> infile.log. The argument may contain $$s.

resultdir The name of the directory in which the converter will dump the generated
files. LYX will not create this directory, and it does not copy anything into
it, though it will copy this directory to the destination. The argument
may contain $$b, which will be replaced by the base name of the input
and output files, respectively, when the directory is copied.
Note that resultdir and usetempdir make no sense together. The latter
will be ignored if the former is given.

resultfile Determines the output file name and may, contain $$b. Sensible only
with resultdir and optional even then; if not given, it defaults to ‘index’.

A suitable hyperref-driver is set for some converters that are installed with LYX. The
last three flags, however, are presently not used in any of the pre-installed converters.

You do not have to define converters for all formats between which you want to
convert. For example, you will note that there is no ‘LYX to PostScript’ converter,
but LYX will export PostScript. It does so by first creating a LATEX file (no converter
needs to be defined for this) which is then converted to DVI using the ‘LATEX to DVI’
converter, and finally converting the resulting DVI file to PostScript. LYX finds such
‘chains’ of converters automatically, and it will always choose the shortest possible
chain. You can, though, still define multiple conversion methods between file formats.
For example, the standard LYX configuration provides five ways to convert LATEX to
PDF:

1. Directly, using pdflatex

2. via (DVI and) PostScript, using ps2pdf

10

3.3. Converters

3. via DVI, using dvipdfm

4. directly using XeTEX

5. directly using LuaTEX

To define such alternate chains, you must define multiple target ‘file formats’, as
described in sec. 3.1. For example, in the standard configuration, the formats named
pdf (for ps2pdf), pdf2 (for pdflatex), pdf3 (for dvipdfm), pdf4 (for XeTEX),
and pdf5 (for LuaTEX) are defined, all of which share the extension .pdf, and
which correspond to the conversion methods just mentioned.

11

4. Internationalizing LYX

LYX supports using a translated interface. Last time we checked, LYX provided text in
thirty languages. The language of choice is called your locale. (For further reading on
locale settings, see also the documentation for locale that comes with your operating
system. For Linux, the manual page for locale(5) could be a good place to start).

Notice that these translations will work, but do contain a few flaws. In particular,
all dialogs have been designed with the English text in mind, which means that some
of the translated text will be too large to fit within the space allocated. This is only
a display problem and will not cause any harm. Also, you will find that some of the
translations do not define shortcut keys for everything. Sometimes, there are simply
not enough free letters to do it. Other times, the translator just hasn’t got around
to doing it yet. Our localization team, which you may wish to join,1 will of course
try to fix these shortcomings in future versions of LYX.

4.1. Translating LYX

4.1.1. Translating the graphical user interface (text messages).
LYX uses the GNU gettext library to handle the internationalization of the interface.
To have LYX speak your favorite language in all menus and dialogs, you need a po-file
for that language. When this is available, you’ll have to generate a mo-file from it and
install the mo-file. The process of doing all of this is explained in the documentation
for GNU gettext. It is possible to do this just for yourself, but if you’re going to
do it, you might as well share the results of your labors with the rest of the LYX
community. Send a message to the LYX developers’ list for more information about
how to proceed.

In short, this is what you should do (xx denotes the language code):

• Check out the LYX source code. (See the information on the web.)

• Copy the file lyx.pot to the folder of the **.po files. Then rename it to
xx.po. (If lyx.pot doesn’t exist anywhere, it can be remade with the console
command make lyx.pot in that directory, or you can use an existing po-file
for some other language as a template).

1If you are a fluent speaker of a language other than English, joining these teams is a great way
to give back to the LYX community!

13

https://www.lyx.org/HowToUseGIT

4. Internationalizing LYX

• Edit xx.po.2 For some menu- and widget-labels, there are also shortcut keys
that should be translated. Those keys are marked after a ‘|’, and should be
translated according to the words and phrases of the language. You should
also fill also out the information at the beginning of the new po-file with your
email-address, etc., so people know where to reach you with suggestions and
entertaining flames.

If you are just doing this on your own, then:

• Generate xx.mo. This can be done with msgfmt -o xx.mo < xx.po.

• Copy the mo-file to your locale-tree, at the correct directory for application mes-
sages for the language xx, and under the name lyx.mo (e. g. /usr/local/share/locale/xx/LC_MESSAGES/lyx.mo.

As said, however, it would be best if the new po file could be added to the LYX
distribution, so others can use it. Adding it involves making additional changes to
LYX. So send an email to the developers’ mailing list if you’re interested in doing
that.

4.1.1.1. Ambiguous messages

Sometimes it turns out that one English message needs to be translated into different
messages in the target language. One example is the message To which has the Ger-
man translation Nach or Bis, depending upon exactly what the English “to” means.
GNU gettext does not handle such ambiguous translations. Therefore you have to
add some context information to the message: Instead of To it becomes To[[as in
’From format x to format y’]] and To[[as in ’From page x to page y’]].
Now the two occurrences of To are different for gettext and can be translated cor-
rectly to Nach and Bis, respectively.

Of course the context information needs to be stripped off the original message
when no translation is used. Therefore you have to put it in double square brackets
at the end of the message (see the example above). The translation mechanism of
LYX ensures that everything in double square brackets at the end of messages is
removed before displaying the message.

4.1.2. Translating the documentation.
The online documentation (in the Help-menu) can (and should!) be translated.
If there are translated versions of the documentation available3 and the locale is
set accordingly, these will be used automagically by LYX. LYX looks for translated

2This is just a text file, so it can be edited in any text editor. But there are also specialized
programs that support such editing, such as Poedit (for all platforms) or KBabel (for KDE).
Emacs contains a ‘mode’ for editing po files, as well, see https://www.gnu.org/software/
gettext/manual/html_node/PO-Mode.html#PO-Mode.

3As of March 2008, at least some of the documents have been translated into fourteen languages,
with the Tutorial available in a few more.

14

https://www.gnu.org/software/gettext/manual/html_node/PO-Mode.html#PO-Mode
https://www.gnu.org/software/gettext/manual/html_node/PO-Mode.html#PO-Mode

4.2. International Keymap Stuff

versions as LyXDir/doc/xx/DocName.lyx, where xx is the code for the language
currently in use. If there are no translated documents, the default English versions
will be displayed. Note that the translated versions must have the same filenames
(DocName above) as the original. If you feel up to translating the documentation (an
excellent way to proof-read the original documentation by the way!), there are a few
things you should do right away:

• Check out the documentation translation web page at https://www.lyx.org/Translation.
That way, you can find out which (if any) documents have already been trans-
lated into your language. You can also find out who (if anyone) is organizing the
effort to translate the documentation into your language. If no one is organizing
the effort, please let us know that you’re interested.

Once you get to actually translating, here’s a few hints for you that may save you
trouble:

• Join the documentation team! There is information on how to do that in
Intro.lyx (Help ▷ Introduction), which by the way is the first document
you should translate.

• Learn the typographic conventions for the language you are translating to. Ty-
pography is an ancient art and over the centuries, a great variety of conventions
have developed throughout different parts of the world. Also study the profes-
sional terminology amongst typographers in your country. Inventing your own
terminology will only confuse the users. (Warning! Typography is addictive!)

• Make a copy of the document. This will be your working copy. You can use
this as your personal translated help-file by placing it in your UserDir/doc/xx/
directory.Note: For a complex document with external material (images, etc.),
if you make a copy e. g. in a temp dir, beware that the links to external material
may be broken when the document is moved to a different place. The best way
is to retrieve the LYX tree from git (see https://www.lyx.org/HowToUseGIT)
and to edit the doc file in place.

• Sometimes the original document (from the LYX team) will be updated. Use
the source viewer at https://www.lyx.org/trac/timeline to see what has been
changed. That way you can easily see which parts of the translated document
need to be updated.

If you ever find an error in the original document, fix it and notify the rest of the
documentation team of the changes! (You didn’t forget to join the documentation
team, did you?)

4.2. International Keymap Stuff
The next two sections describe the .kmap and .cdef file syntax in detail. These
sections should help you design your own key map if the ones provided do not meet

15

https://www.lyx.org/Translation
https://www.lyx.org/HowToUseGIT
https://www.lyx.org/trac/timeline

4. Internationalizing LYX

your needs.

4.2.1. The .kmap File
A .kmap file maps keystrokes to characters or strings. As the name suggests, it sets
a keyboard mapping. The .kmap file keywords kmap, kmod, kxmod, and kcomb are
described in this section.

kmap Map a character to a string

\kmap char string

This will map char to string. Note that in string, the double-quote (") and the
backslash (\) must be escaped with a preceding backslash (\).

An example of a kmap statement to cause the symbol / to be output for the
keystroke & is:

\kmap & /

kmod Specify an accent character

\kmod char accent allowed

This will make the character char be an accent on the allowed character(s). This is
the dead key4 mechanism.

If you hit char and then another key not in allowed, you will get a char followed
by the other, not allowed key, as output. Note that a Backspace cancels a dead
key, so if you hit char Backspace, the cursor will not go one position backwards
but will instead cancel the effect that char might have had on the next keystroke.

The following example specifies that the character ’ is to be an acute accent, allowed
on the characters a, e, i, o, u, A, E, I, O, and U:

\kmod ’ acute aeiouAEIOU

kxmod Specify an exception to the accent character

\kxmod accent char result

This defines an exception for accent on char. The accent must have been assigned a
keystroke with a previous \kmod declaration and char must not belong in the allowed
set of accent. When you enter the accent char sequence, result is produced. If such
a declaration does not exist in the .kmap file and you enter accent char, you get
accent_key char where accent_key is the first argument of the \kmod declaration.

The following command produces causes äi to be produced when you enter acute-i
(’i):

4The term dead key refers to a key that does not produce a character by itself, but when followed
with another key, produces the desired accent character. For example, a German character with
an umlaut like ä can be produced in this manner.

16

4.2. International Keymap Stuff

\kxmod acute i "\\’{\\i}"

kcomb Combine two accent characters

\kcomb accent1 accent2 allowed

This one is getting pretty esoteric. It allows you to combine the effect of accent1 and
accent2 (in that order!) on allowed chars. The keystrokes for accent1 and accent2
must have been set with a \kmod command at a previous point in the file.

Consider this example from the greek.kmap file:

\kmod ; acute aeioyvhAEIOYVH \kmod : umlaut iyIY \kcomb acute umlaut iyIY

This allows you to press ;:i and get the effect of \’{\"{i}}. A backspace in this case
cancels the last dead key, so if you press ;: Backspace i you get \’{i}.

4.2.2. The .cdef File
After the .kmap mapping is performed, a .cdef file maps the strings that the symbols
generate to characters in the current font. The LYX distribution currently includes
at least the iso8859-1.cdef and iso8859-2.cdef files.

In general the .cdef file is a sequence of declarations of the form

char_index_in_set string

For example, in order to map \’{e} to the corresponding character in the iso-8859-1
set (233), the following declaration is used

233 "\\’{e}"

with \ and " being escaped in string. Note that the same character can apply to
more than one string. In the iso-8859-7.cdef file you have

192 "\\’{\\\"{i}}"
192 "\\\"{\\’{i}}"

If LYX cannot find a mapping for the string produced by the keystroke or a deadkey
sequence, it will check if it looks like an accented char and try to draw an accent over
the character on screen.

17

4. Internationalizing LYX

4.2.3. Dead Keys
There is a second way to add support for international characters through so-called
dead-keys. A dead-key works in combination with a letter to produce an accented
character. Here, we’ll explain how to create a really simple dead-key to illustrate how
they work.

Suppose you happen to need the circumflex character, “ˆ”. You could bind the
^-key [a.k.a. Shift-6] to the LYX command accent-circumflex in your lyxrc file.
Now, whenever you type the ^-key followed by a letter, that letter will have a cir-
cumflex accent on it. For example, the sequence “^e” produces the letter: “ê”. If
you tried to type “^t”, however, LYX will complain with a beep, since a “t” never
takes a circumflex accent. Hitting Space after a dead-key produces the bare-accent.
Please note this last point! If you bind a key to a dead-key, you’ll need to rebind
the character on that key to yet another key. Binding the ,-key to a cedilla is a bad
idea, since you’ll only get cedillas instead of commas.

One common way to bind dead-keys is to use Meta-, Ctrl-, and Shift- in com-
bination with an accent, like “~” or “,” or “^”. Another way involves using xmodmap
and xkeycaps to set up the special Mode_Switch key. The Mode_Switch acts in some
ways just like Shift and permits you to bind keys to accented characters. You can
also turn keys into dead-keys by binding them to something like usldead_cedilla
and then binding this symbolic key to the corresponding LYX command.5 You can
make just about anything into the Mode_Switch key: One of the Ctrl- keys, a spare
function key, etc. As for the LYX commands that produce accents, check the entry
for accent-acute in the Reference Manual. You’ll find the complete list there.

4.2.4. Saving your Language Configuration
You can edit your preferences so that your desired language environment is automat-
ically configured when LYX starts up, via the Edit ▷ Preferences dialog.

5Note from John Weiss: This is exactly what I do in my ~/.lyx/lyxrc and my ~/.xmodmap files.
I have my Scroll Lock key set up as Mode_Shift and a bunch of these “usldead_*” symbolic
keys bound such things as Scroll Lock-^ and Scroll Lock-~. This is how I produce my
accented characters.

18

5. Creating and Installing New
Document Classes, Layouts, and
Templates

In this chapter, we describe the procedures for creating and installing new LYX lay-
out and template files, as well as offer a refresher on correctly installing new LATEX
document classes.

First, let us a say a few words about how one ought to think about the relation
between LYX and LATEX. The thing to understand is that, in a certain sense, LYX
doesn’t know anything about LATEX. Indeed, from LYX’s point of view, LATEX is just
one of several “backend formats” in which it is capable of producing output. Other
such formats are DocBook, plaintext, and XHTML. LATEX is, of course, a particularly
important format, but very little of the information LYX has about LATEX is actually
contained in the program itself.1 Rather, that information, even for the standard
classes like article.cls, is contained in ‘layout files’. Similarly, LYX itself does not
know much about DocBook or XHTML. What it knows is contained in layout files.

You can think of the layout file for a given document class as a translation manual
between LYX constructs—paragraphs with their corresponding styles, certain sorts
of insets, etc—and the corresponding LATEX, DocBook, or XHTML constructs. Al-
most everything LYX knows about article.cls, for example, is contained in the file
article.layout and in various other files it includes. For this reason, anyone intend-
ing to write layout files should plan to study the existing files. A good place to start
is with stdsections.inc, which is included in article.layout, book.layout, and
many of the other layout files for document classes. This file is where sections and
the like are defined: stdsections.inc tells LYX how paragraphs that are marked
with the Section, Subsection, etc, styles can be translated into corresponding LATEX,
DocBook, and XHTML commands and tags. The article.layout file basically just
includes several of these std*.inc files.

Defining the LYX–LATEX correspondence is not the only thing layout files do,
though. Their other job is to define how the LYX constructs themselves will ap-
pear on-screen. The fact that layout files have these two jobs is often a source of
confusion, because they are completely separate. Telling LYX how to translate a cer-
tain paragraph style into LATEX does not tell LYX how to display it; conversely, telling
LYX how to display a certain paragraph style does not tell LYX how to translate it

1Some commands are sufficiently complex that they are “hardcoded” into LYX. But the developers
generally regard this as a Bad Thing.

19

5. Installing New Document Classes

into LATEX (let alone tell LATEX how to display it). So, in general, when you define a
new LYX construct, you must always do two quite separate things: (i) tell LYX how
to translate it into LATEX and (ii) tell LYX how to display it.

Much the same is true, of course, as regards LYX’s other backend formats, though
XHTML is in some ways different, because in that case LYX is able, to some extent,
to use information about how it should display a paragraph on the screen to output
information (in the form of CSS) about how the paragraph should be displayed in a
browser. Even in this case, however, the distinction between what LYX does internally
and how things are rendered externally remains in force, and the two can be controlled
separately. See sec. 5.4 for the details.

5.1. Installing new LATEX files
Some installations may not include a LATEX package or class file that you would like
to use within LYX. For example, you might need FoilTEX, a package for preparing
slides for overhead projectors. Modern LATEX distributions like TEXLive (2008 or
newer) or MiKTEX provide a user interface for installing such packages. For example,
with MiKTEX, you start the program “Package Manager” to get a list of available
packages. To install one of them, right click on it or use the corresponding toolbar
button.

If your LATEX distribution does not provide such a ‘package manager’, or if the
package is not available from your distribution, then follow these steps to install it
manually:

1. Get the package from CTAN or wherever.

2. If the package contains a file with the ending “.ins” (is the case for FoilTEX)
then open a console, change to the folder of this file and execute the command
latex foiltex.ins. You have now unpacked the package and have all files to
install it. Most LATEX-packages are not packed and you can skip this step.

3. Now you need to decide if the package should be available for all users or only
for you.

a) On *nix systems (Linux, OSX, etc.), if you want the new package to be
available for all users on your system, then install it in your ‘local’ TEX
tree, otherwise install it in your own ‘user’ TEX tree. Where these trees
should be created, if they do not already exist, depends on your system.
To find this out, look in the file texmf.cnf.2 The location of the ‘local’
TEX tree is defined by the TEXMFLOCAL variable; this is usually somewhere
like /usr/local/share/texmf or /usr/local/texlive/XXXX where XXXX
is the year of the installed TEXLive distribution. The location of the

2This is usually in the directory $TEXMF/web2c, though you can execute the command kpsewhich
texmf.cnf to locate it.

20

http://www.ctan.org/

5.1. Installing new LATEX files

‘user’ TEX tree is defined by TEXMFHOME and is commonly $HOME/texmf or
$HOME/.texliveXXXX. (If these variables are not predefined, you have to
define them.) You’ll probably need root permissions to create or modify
the ‘local’ tree, but not for your ‘user’ tree.
In general, it is recommended to install in the user tree because your user
will not be modified or even overwritten when you upgrade your system.
It will typically also be backed up together with everything else when you
backup your home directory (which, of course, you do on a regular basis).

b) On Windows, if you want the new package to be available for all users
on your system, change to the folder where LATEX is installed and then
change to the subfolder ~\tex\latex. (For MiKTEX, this would be by de-
fault the folder ~:\Programs\MiKTeX\tex\latex.)3 Create there a new
folder foiltex and copy all files of the package into it.
If the package should only available for you or you don’t have admin per-
missions, do the same, but in the local LATEX folder. E. g., for MiKTEX 2.8
under Windows XP, this would be the folder:
~:\Documents and Settings\<username>\Application Data\

MiKTeX\2.8\tex\latex
On Vista, it would be:
~:\Users\<username>\AppData\Roaming\2.8\MiKTeX\tex\latex

4. Now one only need to tell LATEX that there are new files. This depends on the
used LATEX-Distribution:

a) For TEXLive execute the command texhash from a console. If you in-
stalled the package for all users, then you will probably need to have root
permissions for that.

b) For MiKTEX, if you have installed the package for all users, start the pro-
gram “Settings (Admin)” and press the button marked “Refresh FNDB”.
Otherwise start the program “Settings” and do the same.

5. Finally, you need to tell LYX that there are new packages available. So, in LYX,
use the menu Tools ▷ Reconfigure and then restart LYX.

Now the package is installed. In our example, the document class FoilTex will now be
available under Document ▷ Settings ▷ Document Class (in the “Presentations”
category).

If you would like to use a LATEX document class that is not even listed in the menu
Document ▷ Settings ▷ Document Class, then you need to create a ‘layout’ file
for it. That is the topic of the next section.

3Note that this will be the correct path only on English installations. On a German one, it would
be ~:\Programme\MiKTeX\tex\latex, and similarly for other languages.

21

5. Installing New Document Classes

5.2. Types of layout files
This section describes the various sorts of LYX files that contain layout informa-
tion. These files describe various paragraph and character styles, determining how
LYX should display them and how they should be translated into LATEX, DocBook,
XHTML, or whatever output format is being used.

We shall try to provide a thorough description of the process of writing layout
files here. However, there are so many different types of documents supported even
by just LATEX that we can’t hope to cover every different possibility or problem you
might encounter. The LYX users’ list is frequented by people with lots of experience
with layout design who are willing to share what they’ve learned, so please feel free
to ask questions there.

As you prepare to write a new layout, it is extremely helpful to look at the layouts
distributed with LYX. If you write a LYX layout for a LATEX document class that
might also be used by others, or write a module that might be useful to others, then
you should consider posting your layout to the layout section on the LyX wiki or
even to the LYX developers’ list, so that it might be included in LYX itself.4

5.2.1. Layout modules
We have spoken to this point about ‘layout files’. But there are different sorts of files
that contain layout information. Layout files, strictly so called, have the .layout
extension and provide LYX with information about document classes. Since LYX 1.6
layout information can also be contained in layout modules, which have the .module
extension. Modules are to LATEX packages much as layouts are to LATEX classes,
and some modules—such as the endnotes module—specifically provide support for
one package. In a sense, layout modules are similar to included5 files—files like
stdsections.inc—in that modules are not specific to a given document class but
may be used with many different classes. The difference is that using an included
file with article.cls requires editing that file. Modules, by contrast, are selected
in the Document ▷ Settings dialog.

Building modules is the easiest way to get started with layout editing, since it can
be as simple as adding a single new paragraph style or flex inset. But modules may,
in principle, contain anything a layout file can contain.

After creating a new module and copying it to the layouts/ folder, you will need
to reconfigure and then restart LYX for the module to appear in the menu. However,
changes you make to the module will be seen immediately, if you open Document ▷
Settings, highlight something, and then hit “OK”. It is strongly recommended that
you save your work before doing this. In fact, it is strongly recommended that you not
attempt to edit modules while simultaneously working on actual documents. Though

4Note that LYX is licensed under the General Public License, so any material that is contributed
to LYX must be similarly licensed.

5These can have any extension, but by convention have the .inc extension.

22

https://wiki.lyx.org/Layouts/Layouts

5.2. Types of layout files

of course the developers strive to keep LYX stable in such situations, syntax errors
and the like in your module file could cause strange behavior.

5.2.1.1. Local Layout

Modules are to LYX as packages are to LATEX. Sometimes, however, you find yourself
wanting a specific inset or character style just for one document and writing a module
that will also be available to other documents makes little sense. What you need is
LYX’s “Local Layout”.

You will find it under Document ▷ Settings ▷ Local Layout. The large text box allows
you to enter anything that you might enter in a layout file or module. You can think
of a document’s local layout, in fact, as a module that belongs just to it. So, in
particular, you must enter a Format tag. Any format is acceptable, but one would
normally use the format current at the time. (In LYX , the current layout format is
.)

When you have entered something in the Local Layout pane, LYX will enable the
“Validate” button at the bottom. Clicking this button will cause LYX to determine
whether what you have entered is valid layout information for the chosen format. LYX
will report the result but, unfortunately, will not tell you what errors there might
have been. These will be written to the terminal, however, if LYX is started from a
terminal. You will not be permitted to save your local layout until you have entered
something valid.

The warnings at the end of the previous section apply here, too. Do not play
with local layout while you are actually working, especially if you have not saved
your document. That said, using local layout with a test document can be a very
convenient way to try out layout ideas, or even to start developing a module.

5.2.2. Layout for .sty files
There are two situations you are likely to encounter when wanting to support a
new LATEX document class, involving style (.sty) files and LATEX 2ε class (.cls) .
Supporting a style file is usually fairly easy. Supporting a new class file is a bit harder.
We’ll discuss the former in this section and the latter in the next.

The easier case is the one in which your new document class is provided as a style
file that is to be used in conjunction with an already supported document class. For
the sake of the example, we’ll assume that the style file is called myclass.sty and
that it is meant to be used with report.cls, which is a standard class.

Start by copying the existing class’s layout file into your local directory:6

cp report.layout ~/.lyx/layouts/myclass.layout

Then edit myclass.layout and change the line:
6Of course, which directory is your local directory will vary by platform, and LYX allows you to

specify your local directory on startup, too, using the -userdir option.

23

5. Installing New Document Classes

\DeclareLaTeXClass{Report (Standard Class)}

to read

\DeclareLaTeXClass[report, myclass.sty]{Report (My Class)}

Then add:

Preamble
\usepackage{myclass}

EndPreamble

near the top of the file.
Start LYX and select Tools ▷ Reconfigure. Then restart LYX and try creating a

new document. You should see "Report (My Class)" as a document class option in
the Document ▷ Settings dialog. It is likely that some of the sectioning commands
and such in your new class will work differently from how they worked in the base
class—report in this example—so you can fiddle around with the settings for the
different sections if you wish. The layout information for sections is contained in
stdsections.inc, but you do not need to copy and change this file. Instead, you
can simply add your changes to your layout file, after the line Input stdclass.inc,
which itself includes stdsections.inc. For example, you might add these lines:

Style Chapter
Font

Family Sans
EndFont

End

to change the font for chapter headings to sans-serif. This will override (or, in this
case, add to) the existing declaration for the Chapter style.

Your new package may also provide commands or environments not present in the
base class. In this case, you will want to add these to the layout file. See sec. 5.3 for
information on how to do so.

If myclass.sty can be used with several different document classes, and even if
it cannot, you might find it easiest just to write a module that you can load with the
base class. The simplest possible such module would be:

#\DeclareLyXModule{My Class}
#DescriptionBegin
#Support for myclass.sty.
#DescriptionEnd
Format
Preamble

\usepackage{myclass}
EndPreamble

A more complex module might modify the behavior of some existing constructs or
define some new ones. Again, see sec. 5.3 for discussion.

24

5.2. Types of layout files

5.2.3. Layout for .cls files
There are two possibilities here. One is that the class file is itself based upon an
existing document class. For example, many thesis classes are based upon book.cls.
To see whether yours is, look for a line like

\LoadClass{book}

in the file. If so, then you may proceed largely as in the previous section, though the
DeclareLATEXClass line will be different. If your new class is thesis and it is based
upon book, then the line should read:7

\DeclareLaTeXClass[thesis,book]{thesis}

If, on the other hand, the new class is not based upon an existing class, you will
probably have to “roll your own” layout. We strongly suggest copying an existing
layout file which uses a similar LATEX class and then modifying it, if you can do so.
At least use an existing file as a starting point so you can find out what items you
need to worry about. Again, the specifics are covered below.

5.2.4. Creating templates
Once you have written a layout file for a new document class, you might want to
consider writing a template for it, too. A template acts as a kind of tutorial for your
layout, showing how it might be used, though containing dummy content. You can
of course look at the various templates included with LYX for ideas.

Templates are created just like usual documents: using LYX. The only difference is
that usual documents contain all possible settings, including the font scheme and the
paper size. Usually a user doesn’t want a template to overwrite his preferred settings
for such parameters. For that reason, the designer of a template should remove the
corresponding commands like \font_roman or \papersize from the template LYX
file. This can be done with any simple text-editor, for example vi or notepad.

Put the edited template files you create in UserDir/templates/, copy the ones
you use from the global template directory in LyXDir/templates/ to the same place,
and redefine the template path in the Tools ▷ Preferences ▷ Paths dialog.

Note, by the way, that there is a template which has a particular meaning:
defaults.lyx. This template is loaded every time you create a new document with
File ▷ New in order to provide useful defaults. To create this template from inside
LYX, all you have to do is to open a document with the correct settings, and use the
Save as Document Defaults button.

7And it will be easiest if you save the file to thesis.layout: LYX assumes that the document
class has the same name as the layout file.

25

5. Installing New Document Classes

5.2.5. Upgrading old layout files
The format of layout files changes with each LYX release, so old layout files need to
be converted to the new format. If LYX reads a layout file in an older format, it
automatically calls the script layout2layout.py to convert it to a temporary file in
current format. The original file is left untouched. If you use the layout file often,
then, you may want to convert it permanently, so that LYX does not have to do so
itself every time. To do this, you can call the converter manually:

1. rename the file myclass.layout to myclass.old

2. Call the command
python LyXDir/scripts/layout2layout.py myclass.old myclass.layout
where LyXDir is the name of your LYX system directory.

Note that manual conversion does not affect included files, so these will have to be
converted separately.

5.2.6. Cite engine files
A specific form of layout files are the so-called *.citeengine files that are located
in the citeengines/ sub-directory. Their purpose is to define the specifics of LATEX
packages aimed at bibliography generation, such as natbib, jurabib or biblatex, but also
the way how normal BibTEX citations (without additional packages) are handled in
LYX is defined in such a file.

More specifically, it is defined which packages LYX needs to load, which citation
commands are available, how these are to be displayed in LYX (in the workarea,
the dialogs, the context menus) as well as in the XHTML and plain text output.
Furthermore, the files specify available style variants (author-year, numerical, etc.)
and their specifics. The cite engine files are also used to generate the options that
are available in Document ▷ Settings ▷ Bibliography ▷ Style engine.

Even though a cite engine file is essentially a normal layout file that could theo-
retically include any layout information, it usually primarily includes some specific
parameters such as MaxCiteNames, CiteFramework, CiteEngine and CiteFormat
blocks. The syntax of the latter two is described in sec. 5.3.14 and sec. 5.3.15, as well
as in the files themselves.

5.3. The layout file format
The following sections describe how layout files are structured and written. Our ad-
vice is to go slowly, save and test often. It is really not that hard, except that the
multitude of options can become overwhelming, especially if you try to check out too
many at once. It becomes easier if you use existing layouts of LYX as examples/ref-
erence or if you modify an existing layout to your needs.

26

5.3. The layout file format

Note that all the tags used in layout files are case-insensitive. This means that
Style, style and StYlE are really the same tag. The possible arguments are printed
in brackets after the tag’s name. The default argument is typeset emphasized . If
the argument has a data type like “string” or “float”, the default is shown like this:
float=default .

5.3.1. The document class declaration and classification
Lines in a layout file which begin with # are comments. There is one exception to
this rule. All *.layout files should begin with lines like:

#% Do not delete the line below; configure depends on this
\DeclareLaTeXClass{Article (Standard Class)}
\DeclareCategory{Articles}

The second and third lines are used when you (re)configure LYX. The layout file is
read by the LATEX script chkconfig.ltx, in a special mode where # is ignored. The
first line is just a LATEX comment, the second one contains the mandatory declaration
of the text class and the third line contains the optional classification of the class.
If these lines appear in a file named article.layout, then they define a text class
of name article (the name of the layout file) which uses the LATEX document class
article.cls (the default is to use the same name as the layout). The string “Article
(Standard Class)” that appears above is used as a description of the text class in the
Document ▷ Settings dialog. The category (“Articles” in the example) is also
used in the Document ▷ Settings dialog: the text classes are grouped by these
categories (which are usually genres, so typical categories are “Articles”, “Books”,
“Reports”, “Letters”, “Presentations”, “Curricula Vitae” etc.). If no category has
been declared, the class will be put in the “Uncategorized” group.

Let’s assume that you wrote your own text class that uses the article.cls doc-
ument class, but where you changed the appearance of the section headings. If you
put it in a file myarticle.layout, the header of this file should be:

#% Do not delete the line below; configure depends on this
\DeclareLaTeXClass[article]{Article (with My Own Headings)}
\DeclareCategory{Articles}

This declares a text class myarticle, associated with the LATEX document class
article.cls and described as “Article (with My Own Headings)”. If your text class
depends on several packages, you can declare it as:

#% Do not delete the line below; configure depends on this
\DeclareLaTeXClass[article,foo.sty]{Article (with My Own Headings)}
\DeclareCategory{Articles}

27

5. Installing New Document Classes

This indicates that your text class uses the foo.sty package.
Note that these declarations can also be given an optional parameter declaring the

name of the document class (but not a list).
So, to be as explicit as possible, the form of the layout declaration is:

\DeclareLaTeXClass[class,package.sty]{layout description}
\DeclareCategory{category}

The class need only be specified if the name of the LATEX class file and the name of
the layout file are different or if there are packages to load. If the name of the class
file is not specified, then LYX will simply assume that it is the same as the name of
the layout file.

When the text class has been modified to your taste, all you have to do is to copy
it either to LyXDir/layouts/ or to UserDir/layouts, run Tools ▷ Reconfigure,
exit LYX and restart. Then your new text class should be available along with the
others.

Once the layout file is installed, you can edit it and see your changes without
having to reconfigure or to restart LYX.8 You can force a reload of the current layout
by using the LYX function layout-reload. There is no default binding for this
function—though, of course, you can bind it to a key yourself. But you will normally
use this function simply by entering it in the mini-buffer.

Warning: layout-reload is very much an ‘advanced feature’. It is strongly
recommended that you save your work before using this function. In fact, it is strongly
recommended that you not attempt to edit layout information while simultaneously
working on a document that you care about. Use a test document. Syntax errors and
the like in your layout file could cause peculiar behavior. In particular, such errors
could cause LYX to regard the current layout as invalid and to attempt to switch to
some other layout.9 The LYX team strives to keep LYX stable in such situations, but
safe is better than sorry.10

5.3.2. The Module declaration
A module must begin with a line like the following:

#\DeclareLyXModule[endnotes.sty]{Endnotes}
#\DeclareCategory{Foot- and Endnotes}

The mandatory argument of \DeclareLyXModule, in curly brackets, is the name of
the module, as it should appear in Document ▷ Settings ▷ Modules. The argu-
ment in square brackets is optional: It declares any LATEX packages on which the

8In versions of LYX prior to 1.6, this was not true. As a result, editing layout files was very time
consuming, since you had constantly to restart LYX to see changes.

9Really bad syntax errors may even caused LYX to exit. This is because certain sorts of errors
may make LYX unable to read any layout information. Please be careful.

10While we’re giving advice: make regular backups. And be nice to your mother.

28

5.3. The layout file format

module depends. It is also possible to use the form from->to as an optional argu-
ment, which declares that the module can only be used when there exists a conversion
chain between the formats ‘from’ and ‘to’. The \DeclareCategory declaration is not
strictly mandatory, but you should add it, since it is helpful to find the module. Please
have a look at the existing module categories and if appropriate, use one of those.

The module and category declaration should then be followed by lines like the
following:11

#DescriptionBegin
#Adds an endnote command, in addition to footnotes.
#You will need to add \theendnotes in TeX code where you
#want the endnotes to appear.
#DescriptionEnd
#Requires: somemodule | othermodule
#Excludes: badmodule

The description is used in Document ▷ Settings ▷ Modules to provide the user
with information about what the module does. The Requires line is used to identify
other modules with which this one must be used; the Excludes line is used to identify
modules with which this one may not be used. Both are optional, and, as shown,
multiple modules should be separated with the pipe symbol: |. Note that the required
modules are treated disjunctively: at least one of the required modules must be
used. Similarly, no excluded module may be used. Note that modules are identified
here by their filenames without the .module extension. So somemodule is really
somemodule.module.

5.3.3. The CiteEngine file declaration
A cite engine file must begin with a line like the following:

#\DeclareLyXCiteEngineModule[biblatex.sty]{Biblatex}

The mandatory argument, in curly brackets, is the name of the cite style, as it
should appear in Document ▷ Settings ▷ Bibliography. The argument in square
brackets is optional: It declares any LATEX packages on which the cite engine depends.

The cite engine declaration should then be followed by lines like the following:12

DescriptionBegin
Biblatex supports many author-year and numerical styles.
It is mainly aimed at the Humanities. It is highly
customizable, fully localized and provides many features

11Preferably in English if the module should be published with LYX. This description will appear in
the list of messages to be translated and will be thus translated with the next interface update.

12Preferably in English if the module should be published with LYX. This description will appear in
the list of messages to be translated and will be thus translated with the next interface update.

29

5. Installing New Document Classes

that are not possible with BibTeX. The use of ’biber’ as
bibliography processor is advised.
DescriptionEnd

The description is used in Document ▷ Settings ▷ Bibliography to provide the
user with information about the cite engine.

5.3.4. Format number
The first non-comment line of any layout file, included file, or module must contain
the file format number:

Format [int] The format number of the layout file.

This tag was introduced with LYX 1.4.0. Layout files from older LYX versions do
not have an explicit file format and are considered to have Format 1. The format
for the present version of LYX is format 60. But each version of LYX is capable of
reading earlier versions’ layout files, just as they are capable of reading files produced
by earlier versions of LYX. There is, however, no provision for converting to earlier
formats.

5.3.5. General text class parameters
These are general parameters that govern the behavior of an entire document class.
(This does not mean that they must appear in .layout files rather than in modules.
A module can contain any layout tag.)

AddToCiteEngine <engine> Extends the possibilities for displaying citation refer-
ences. See sec. 5.3.14 for details. Must end with End.

AddToHTMLPreamble Adds information that will be output in the <head> block when
the document is output to XHTML. Typically, this would be used to output
CSS style information, but it can be used for anything that can appear in
<head>. Must end with “EndPreamble”.

AddToPreamble Adds information to the document preamble. Must end with
“EndPreamble”.

BibInToc [0 , 1] If the document class adds the bibliography to the table of contents,
add this option with value 1 (or true). This prevents the bibliography from
being added twice.

CiteEngine <engine> Defines the possibilities for displaying citation references.
See sec. 5.3.14 for details. Must end with “End”. Primarily used in cite en-
gine files (see sec. 5.2.6). Note that if you specify this in a layout file or module,
any cite engine definition will be overridden. Also see AddToCiteEngine.

30

5.3. The layout file format

CiteFormat Defines formats for use in the display of bibliographic information. See
sec. 5.3.15 for details. Must end with “End”. Primarily used in cite engine files
(see sec. 5.2.6). A cite format defined in a layout or module will override the
cite engine definition.

CiteFramework [bibtex ,biblatex] Determines whether Biblatex or BibTEX is used
to generate a Bibliography. Primarily used in cite engine files (see sec. 5.2.6).

ClassOptions Describes various global options supported by the document class.
See sec. 5.3.6 for a description. Must end with “End”.

Columns [1 , 2] Whether the class should default to having one or two columns. Can
be changed in the Document ▷ Settings dialog.

Counter [string] This sequence defines the properties for a counter. If the counter
does not yet exist, it is created; if it does exist, it is modified. Must end with
“End”.
See sec. 5.3.12 for details on counters.

DefaultFont Sets the default font used to display the document. See sec. 5.3.13 for
how to declare fonts. Must end with “EndFont”.

DefaultModule [<module>] Specifies a module to be included by default with this
document class. The module is specified as filename without the .module ex-
tension. The user can still remove the module, but it will be active at the
outset. (This applies only when new files are created, or when this class is
chosen for an existing document.)

DefaultStyle [<style>] This is the style that will be assigned to new paragraphs,
usually Standard. This will default to the first defined style if not given, but
you are encouraged to use this directive.

DocBookRoot [string] The root element (at the top of the document) to use when
outputting documents with this class in DocBook. The default value is “article”.

DocBookForceAbstract [boolean] If “true”, the root element will always have an
<abstract> tag. The default value is “false”.

ExcludesModule [<module>] This tag indicates that the module (which is specified
by filename without the .module extension) cannot be used with this document
class. This might be used in a journal-specific layout file to prevent, say, the
use of the theorems-sec module that numbers theorems by section. This tag
may not be used in a module. Modules have their own way of excluding other
modules (see sec. 5.2.1).

Float Defines a new float. See sec. 5.3.9 for details. Must end with “End”.

31

5. Installing New Document Classes

HTMLPreamble Sets the information that will be output in the <head> block when
this document class is output to XHTML. Note that this will completely over-
ride any prior HTMLPreamble or AddToHTMLPreamble declarations. (Use
AddToHTMLPreamble if you just want to add material to the preamble.) Must
end with “EndPreamble”.

HTMLTOCSection [<style>] The style to use for the table of contents, bibliography,
and so forth, when the document is output to HTML. For articles, this should
normally be Section; for books Chapter. If it is not given, then LYX will
attempt to figure out which layout to use.

IfCounter [<counter>] Modifies the properties of the given counter. If the counter
does not exist, the statement is ignored. Must end with “End”.
See sec. 5.3.12 for details on counters.

Input [<filename>] This allows you to include another layout definition file within
yours to avoid duplicating commands. Common examples are the standard lay-
out files, for example, stdclass.inc, which contains most of the basic layouts.

InputGlobal [<filename>] is a variant of the Input command which does not look
for files in the user directory. This allows to create a file name.layout or
name.inc in the user directory which includes a global file with the same name
via InputGlobal name or InputGlobal name.inc, respectively (with Input,
the file would recursively include itself). This way, you can modify global files
without having to completely copy them.

InsetLayout [<type>] This section (re-)defines the layout of an inset. It can be
applied to an existing inset or to a new, user-defined inset, e.g., a new character
style. Must end with “End”.
See sec. 5.3.10 for more information.

LeftMargin [string] A string that indicates the width of the left margin on the
screen, for example, “MMMMM”. (Note that this is not a ‘length’, like “2ex”.)

MaxCiteNames [integer] An integer that determines the maximal number of names
displayed in an author-year citation before the citation switches to “FirstAuthor
et al.”. Primarily used in cite engine files (see sec. 5.2.6).

ModifyInsetLayout [<type>] Modifies the layout of an inset. If the layout does not
exist, this section is ignored. Must end with “End”.

ModifyStyle [<style>] Modifies the properties of the given paragraph style. If the
style does not exist, this section is ignored. Must end with “End”.

NoCounter [<counter>] Deletes an existing counter, usually one defined in an in-
cluded file.

32

5.3. The layout file format

NoFloat [<float>] Deletes an existing float. This is particularly useful when you
want to suppress a float that has been defined in an input file.

NoStyle [<style>] Deletes an existing style.

OutlinerName [<type>] [<string>] Define a new table of contents with type <type>
and name <string>. See also the AddToToc commands.

OutputFormat [<format>] The file format (as defined in the LYX preferences) pro-
duced by this document class. It is mainly useful when OutputType is literate
and one wants to define a new type of literate document. The format is reset
to “latex” when the corresponding OutputType parameter is encountered.

OutputType [lat ex, literate] Specifies what sort of output documents using this
class will produce.

PackageOptions [string string] Specifies options, given in the second string, for
the package named by the first string. For example, “PackageOptions natbib
square” will cause natbib to be loaded with the square option. (For TEXperts,
this causes LYX to output: \PassOptionsToPackage{natbib}{square} prior
to loading natbib.)

PageSize [custom, letter, legal, executive, a0, a1, a2, a3, a4, a5, a6,
b0, b1, b2, b3, b4, b5, b6, c0, c1, c2, c3, c4, c5, c6, b0j, b1j, b2j,
b3j, b4j, b5j, b6j] The default page size. This is used by some converters.

PageStyle [plain , empty, headings] The default pagestyle. Can be changed in the
Document ▷ Settings dialog.

Preamble Sets the preamble for the LATEX document. Note that this will com-
pletely override any prior Preamble or AddToPreamble declarations. (Use
AddToPreamble if you just want to add material to the preamble.) Must end
with “EndPreamble”.

ProvideInsetLayout [<type>] Defines the layout of an inset if it does not already
exist. If the layout does exist, this section is ignored. Must end with “End”.

Provides [string] [0 , 1] Whether the class already provides the feature string. A
feature is in general the name of a package (e. g. amsmath or makeidx) or a
macro (e. g. url or boldsymbol). See Appendix A for the list of features.

ProvidesModule [string] Indicates that this layout provides the functionality of
the module mentioned, which should be specified by the filename without the
.module extension. This will typically be used if the layout includes the module
directly, rather than using the DefaultModule tag to indicate that it ought
to be used. It could also be used in a module that provided an alternate
implementation of the same functionality.

33

5. Installing New Document Classes

ProvideStyle [<style>] Creates a new paragraph style if it does not already exist.
If the style does exist, this section is ignored. Must end with “End”.

Requires [string] Whether the class requires the feature string. Multiple features
must be separated by commas. Note that you can only request supported
features. (See Appendix A for the list of features.). If you require a package
with specific options, you can additionally use PackageOptions.

RightMargin [string] A string that indicates the width of the right margin on the
screen, for example, “MMMMM”.

SecNumDepth [int=3] Sets which divisions get numbered. Corresponds to the
secnumdepth counter in LATEX.

Sides [1 , 2] Whether the class-default should be printing on one or both sides of the
paper. Can be changed in the Document ▷ Settings dialog.

Style [<name>] This sequence defines a paragraph style. If the style does not yet
exist, it is created; if it does exist, its parameters are modified. Must end with
“End”.
See sec. 5.3.7 for details on paragraph styles.

TableStyle [<name>] defines the default table style that is used when inserting a
table. The following styles are available:

• Formal_with_Footline: formal (“booktabs”) style with horizontal lines
only, using a bold top and bottom line, the first and last row are addition-
ally separated from the table body with a thin middle line.

• Formal_without_Footline: same as the above, but the last row is not
separated with a middle line from the body.

• Simple_Grid: Simple table lines.
• Grid_with_Head: Like Simple_Grid, but with the header row offset with

a second horizontal line. This is also the default style of LYX.
• No_Borders: Table without lines.

TitleLatexName [string="maketitle"] The name of the command or environment
to be used with TitleLatexType.

TitleLatexType [CommandAfter , Environment] Indicates what kind of markup is
used to define the title of a document. CommandAfter means that the macro
with name TitleLatexName will be inserted after the last layout which has
“InTitle 1”. Environment corresponds to the case where all layouts which
have “InTitle 1” should be enclosed into the TitleLatexName environment.

TocDepth [int=3] Sets which divisions are included in the table of contents. Corre-
sponds to the tocdepth counter in LATEX.

34

5.3. The layout file format

5.3.6. ClassOptions section
The ClassOptions section can contain the following entries:

FontSize [string="10|11|12"] The list of available font sizes for the document’s
main font, separated by “|”. Any number is possible.

FontSizeFormat [string] The format for the font size option. Default: $$spt. $$s
is a placeholder for the font size.

PageSize [string="letter|legal|executive|a0|a1|a2|a3|a4|a5|a6|b0|b1|b2|
b3|b4|b5|b6|c0|c1|c2|c3|c4|c5|c6|b0j|b1j|b2j|b3j|b4j|b5j|b6j"] The
list of available page sizes, separated by “|”. Currently, only the listed sizes are
supported. Other sizes might be entered as custom class option.

PageSizeFormat [string] The format for the page size option. Default: $$spaper.
$$s is a placeholder for the paper size.

PageStyle [string="empty|plain|headings|fancy"] The list of available page sty-
les, separated by “|”.

Other [string=""] Some document class options, separated by a comma, that will
be added to the optional part of the \documentclass command.

The ClassOptions section must end with “End”.

5.3.7. Paragraph styles
A paragraph style description looks like this:13

Style name
...

End

where the following commands are allowed:

AddToToc [string=""] This paragraph will appear in the table of contents of the
given type. An empty string disables. See also the OutlinerName and the
IsTocCaption commands. Default: disabled.

Align [block, left, right, center] Paragraph alignment.

AlignPossible [block, left, right, center] A comma separated list of permit-
ted alignments. (Some LATEX styles prohibit certain alignments, since those
wouldn’t make sense. For example a right-aligned or centered enumeration
isn’t possible.)

13Note that this will either define a new style or modify an existing one.

35

5. Installing New Document Classes

Argument [int] Defines argument number <int> of a command/environment asso-
ciated with the current style. The definition must end with EndArgument. See
sec. 5.3.11 for more information.

AutoNests Includes a comma-separated list of layouts that should be nested in and
after the current layout. Only makes sense for nestable layouts (such as envi-
ronments). Must be ended by “EndAutoNests”. See also IsAutoNestedBy.

BabelPreamble Note that this will completely override any prior BabelPreamble
declaration for this style. Must end with “EndBabelPreamble”. See sec. 5.3.8
for details on its use.

BottomSep [float=0]14 The vertical space with which the last of a chain of para-
graphs with this style is separated from the following paragraph. If the next
paragraph has another style, the separations are not simply added, but the
maximum is taken.

Category [string] The category for this style. This is used to group related styles
in the style combobox on the toolbar. Any string can be used, but you may
want to use existing categories with your own styles.

CopyStyle [string] Copies all the features of an existing style into the current one.
Note that this copies the style as it is defined at that point. Later changes to
it will not affect styles into which it has been copied.

DependsOn [<name>] The name of a style whose preamble should be output before
this one. This allows to ensure some ordering of the preamble snippets when
macros definitions depend on one another.15

DocBookGenerateTitle [bool=false] Generates a title tag after the wrapper tag.
This parameter should only be used withDocBookWrapperTag, otherwise the
title will be output before the contents of the environment. The generated
title is the same as the LyXHTML label: a combination of the environment
type and its number. A major use is when DocBook has no close mapping for
LaTeX environments and users must fallback to using a generic container such
asfigure, which requires a title although there is none in LaTeX. This feature
is heavily used for theorem-like environments.

EndLabelType [No_Label, Box, Filled_Box, Static] The type of label that stands
at the end of the paragraph (or sequence of paragraphs if LatexType is
Environment, Item_Environment or List_Environment). No_Label means
“nothing”, Box (resp. Filled_Box) is a white (resp. black) square suitable for
end of proof markers, Static is an explicit text string.

14Note that a ‘float’ here is a real number, such as: 1.5.
15Note that, besides that functionality, there is no way to ensure any ordering of preambles. The

ordering that you see in a given version of LYX may change without warning in later versions.

36

5.3. The layout file format

EndLabelString [string=""] The string used for a label with a Static
EndLabelType.

Font The font used for both the text body and the label. See sec. 5.3.13. Note that
defining this font automatically defines the LabelFont to the same value. So
you should define this one first if you also want to define LabelFont.

ForceLocal [int=0] Used for backporting new styles to stable LYX versions. The
first stable version that supports this tag is LYX 2.1.0. The argument is a num-
ber which may either be 0, -1 or any value greater than zero. If the ForceLocal
flag of a style is greater than zero, it will always be written to the document
header. If a .lyx file is read, the style definitions from the document header are
added to the document class. Therefore even older LYX versions can handle the
style. The argument of ForceLocal is a version number: if the style is read,
and the version number is less than the version number of the already existing
style in the document class, the new style is ignored. If the version number
is greater, the new style replaces the existing style. A value of -1 means an
infinite version number, i. e. the style is always used.

FreeSpacing [0 , 1] Usually LYX does not allow you to insert more than one space be-
tween words, since a space is considered as the separation between two words,
not a character or symbol of its own. This is a very fine thing but some-
times annoying, for example, when typing program code or plain LATEX code.
For this reason, FreeSpacing can be enabled. LYX will create non-breaking
spaces for the additional blanks when Passthru 1 is not specified. Note that
FreeSpacing implies KeepEmpty.

HTML* These tags are used with XHTML output. See sec. 5.4.1.

InPreamble [0 , 1] If 1, marks the style as to be included in the document preamble
and not in the document body. This is useful for document classes that want
such information as the title and author to appear in the preamble. Note that
this works only for styles for which the LatexType is Command or Paragraph.

InTitle [0 , 1] If 1, marks the style as being part of a title block (see also the
TitleLatexType and TitleLatexName global entries).

IsAutoNestedBy Includes a comma-separated list of layouts after which this one
should be nested. Only makes sense with regard to nestable layouts (such as
environments). Must be ended by “EndIsAutoNestedBy”. See also AutoNests.

IsTocCaption [0 , 1] If this is set to 1 and AddToToc is enabled, the paragraph adds
a summary of its contents in its item in the table of contents. Otherwise, only
the label, if it exists, appears.

37

5. Installing New Document Classes

ItemCommand [string="item"] The LATEX command sequence declaring an item in
a list. The command is to be defined without the preceding backslash (the
default is “item”, resulting in \item in the LATEX output).

ItemSep [float=0] This provides extra space between paragraphs that have the same
style. If you put other styles into an environment, each is separated with the
environment’s ParSep. But the whole items of the environment are additionally
separated with this ItemSep. Note that this is a multiplier.

KeepEmpty [0 , 1] Usually LYX does not allow you to leave a paragraph empty, since
it would lead to empty LATEX output. There are some cases where this could
be desirable however: in a letter template, the required fields can be provided
as empty fields, so that people do not forget them; in some special classes, a
style can be used as some kind of break, which does not contain actual text.

LabelBottomsep [float=0] The vertical space between the label and the text body.
Only used for labels that are above the text body (Top_Environment and
Centered_Top_Environment).

LabelCounter [string=""] The name of the counter for automatic numbering. In
order to have the counter appear with your label, you will need to reference
it in the LabelString. This will work with LabelTypes, Static, Above and
Centered, at least.
This may also be given if LabelType is Enumerate, though this case is a bit
complicated. Suppose you declare “LabelCounter myenum”. Then the actual
counters used are myenumi, myenumii, myenumiii and myenumiv, much as in
LATEX. These counters must all be declared separately.
See sec. 5.3.12 for details on counters.

LabelFont The font used for the label. See sec. 5.3.13.

LabelIndent [string=""] Text that indicates how far a label should be indented.

LabelSep [string=""] Text that indicates the amount of horizontal space between
the label and the text body. Only used for labels that are not above the text
body.

LabelString [string=""] The string used for the label. When LabelCounter is
set, this string can be contain the special formatting commands described in
sec. 5.3.12.

LabelStringAppendix [string=""] This is used inside the appendix instead of
LabelString. Note that every LabelString statement resets
LabelStringAppendix too.

LabelType [No_Label, Manual, Static, Above,
Centered, Sensitive, Enumerate,
Itemize, Bibliography]

38

5.3. The layout file format

Manual means the label is the very first word (up to the first real blank). Use
non-breaking spaces if you want more than one word as the label.

Static means the label is simply what is declared as LabelString. This will
be displayed “inline”, at the beginning of the paragraph. If the LatexType
is Environment, then it will be displayed only in the first paragraph of any
sequence of paragraphs with the same Style.

Above and Centered are special cases of Static. The label will be printed
above the paragraph either at the beginning of the line or centered.

Sensitive is a special case for the caption-labels “Figure” and “Table”.
Sensitive means the (hardcoded) label string depends on the kind of
float: It is hardcoded to be ‘FloatType N’, where N is the value of the
counter associated with the float. For the case that a caption is inserted
outside of a float the LabelString will appear as “Senseless!”.

Enumerate produces the usual sort of enumeration labels. The number type
needs to be set in the Counter, see sec. 5.3.12.

Itemize produces various bullets at the different levels. The bullet types dis-
played can be set via Document ▷ Settings ▷ Bullets.

Bibliography should be used only with LatexType BibEnvironment.

LangPreamble Note that this will completely override any prior LangPreamble dec-
laration for this style. Must end with “EndLangPreamble”. See sec. 5.3.8 for
details on its use.

LatexName [<name>] The name of the corresponding LATEX stuff. Either the environ-
ment or command name.

LatexParam [<parameter>] An optional parameter for the corresponding LatexName
stuff. This parameter cannot be changed from within LYX (use Argument for
customizable parameters). This will be output as is after all LATEX Arguments.

LatexType [Paragraph, Command, Environment, Item_Environment,
List_Environment, Bib_Environment] How the style should be translated
into LATEX.16

Paragraph means nothing special.
Command means \LatexName {...}.
Environment means \begin{LatexName }...\end{LatexName }.
Item_Environment is the same as Environment, except that an \item is gen-

erated for each paragraph of this environment.
16LatexType is perhaps a bit misleading, since these rules apply to SGML classes, too. Visit the

SGML class files for specific examples.

39

5. Installing New Document Classes

List_Environment is the same as Item_Environment, except that
LabelWidthString is passed as an argument to the environment.
LabelWidthString can be defined in the Edit ▷ Paragraph settings
dialog.

Bib_Environment is like Environment but adds the necessary mandatory ar-
gument (the longest label) to the begin statement of the bibliography
environment:
\begin{thebibliography}{99}. It is therefore only useful for bibliogra-
phy environments. The default longest label “99” can be changed by the
user in the paragraph settings of a bibliography item.

Putting the last few things together, the LATEX output will be either:

\LatexName[LatexParam]{...}

or:

\begin{LatexName}[LatexParam] ... \end{LatexName}.

depending upon the LATEX type.

LeftDelim [string] A string that is put at the beginning of the style content. A
line break in the output can be indicated by
.

LeftMargin [string=""] If you put styles into environments, the different LeftMargin
are not simply added, but added with a factor 4

depth+4 . Note that this parameter
is also used when Margin is defined as Manual or Dynamic. Then it is added to
the manual or dynamic margin.
For example “MM” means that the paragraph is indented with the width of “MM”
in the normal font. You can get a negative width by prefixing the string with
“-”. This way was chosen so that the look is the same with each used screen
font.

Margin [Static, Manual, Dynamic, First_Dynamic, Right_Address_Box]
The kind of margin that the style has on the left side.

Static just means a fixed margin.

Manual means that the left margin depends on the string entered in the Edit ▷
Paragraph Settings dialog. This is used to typeset nice lists without
tabulators.

Dynamic means that the margin depends on the size of the label. This is
used for automatic enumerated headlines. It is obvious that the headline
“5.4.3.2.1 Very long headline” must have a wider left margin (as wide as
“5.4.3.2.1” plus the space) than “3.2 Very long headline”, even if standard
“word processors” are not able to do this.

40

5.3. The layout file format

First_Dynamic is similar, but only the very first row of the paragraph is dy-
namic, while the others are static; this is used, for example, for descrip-
tions.

Right_Address_Box means the margin is chosen in a way that the longest
row of this paragraph fits to the right margin. This is used to typeset an
address on the right edge of the page.

NeedProtect [0 , 1] Whether fragile commands in this style should be \protect’ed.
(Note: This is not whether this command should itself be protected.)

NeedCProtect [-1, 0 , 1] Value 1 causes macros that contain this layout to be pro-
tected with \cprotect (cf. package cprotect) if necessary and thus allows
(some) verbatim stuff in macros. With the default setting (value 0), \cprotect
is used if a nested element requires it. Value -1 prevents any use of \cprotect
within this layout, even if required by a nested element.

NeedMBoxProtect [0 , 1] Whether specific commands in this style (such as \cite and
\ref) should be protected in an \mbox. This is particularly needed for styles
that draw on ulem or soul commands which parse their content in complex ways.

Newline [0, 1] Whether newlines are translated into LATEX newlines (\\) or not. The
translation can be switched off to allow more comfortable LATEX editing inside
LYX.

NextNoIndent [0 , 1] If set to true, and if DefaultStyle (usually Standard) para-
graphs are being indented, then the indentation of such a paragraph following
one of this type will be suppressed. (So this will not affect the display of
non-default paragraphs.)

ObsoletedBy [<name>] Name of a style that has replaced this style. This is used to
rename a style, while keeping backward compatibility.

ParagraphGroup [0, 1] Determines whether consecutive paragraphs of the same type
are treated as belonging together. This has the effect that the GuiLabel is
only printed once before such a group. By default, this is true for LaTeXType
Environment and Bib_Environment and false for all other types.

ParbreakIsNewline [0 , 1] Indicates that paragraphs will not be separated by an
empty line in LATEX output, but only by a line break; together with PassThru
1, this allows to emulate a plain text editor (like the ERT inset).

ParIndent [string=""] The indent of the very first line of a paragraph. The
Parindent will be fixed for a certain style. The exception is the default style,
since the indentation for these paragraphs can be prohibited with NextNoIndent.
Also, Standard style paragraphs inside environments use the Parindent of the
environment, not their native one. For example, Standard paragraphs inside
an enumeration are not indented.

41

5. Installing New Document Classes

ParSep [float=0] The vertical space between two paragraphs of this style.

Parskip [float=0] LYX allows the user to choose either “indent” or “skip” to sepa-
rate paragraphs. When “indent” is chosen, Parskip is ignored. When “skip” is
chosen, ParIndent is ignored and all paragraphs are separated by the Parskip
argument. The vertical space is calculated with Parskip * DefaultHeight
where DefaultHeight is the height of a row with the normal font. This way,
the look stays the same with different screen fonts.

PassThru [0 , 1] Whether the contents of this paragraph should be output in raw
form, meaning without special translations that LATEX would require.

PassThruChars [string] Defines individual characters that should be output in raw
form, meaning without special translations that LATEX would require.

Preamble Information to be included in the LATEX preamble when this style is used.
Used to define macros, load packages, etc., required by this particular style.
Must end with “EndPreamble”.

RefPrefix [string] The prefix to use when creating labels referring to paragraphs
of this type. This allows the use of formatted references.

Requires [string] Whether the style requires the feature string (see Appendix A
for the list of features). If you require a package with specific options, you
can additionally use PackageOptions as a general text class parameter (see
sec. 5.3.5).

ResetArgs [0 ,1] Resets the LATEX arguments of this style (as defined via the Argument
tag). This is useful if you have copied a style via CopyStyle, but you do not
want to inherit its (required and optional) arguments.

ResumeCounter [0 ,1] Resumes a counter that is usually reset at each new sequence
of layouts. This is currently only useful when LabelType is Enumerate.

RightDelim [string] A string that is put at the end of the layout content. A line
break in the output can be indicated by
.

RightMargin [string=""] Similar to LeftMargin.

Spacing [single , onehalf, double, other <value>] This defines what the default
spacing should be in the style. The arguments single, onehalf and double
correspond respectively to a multiplier value of 1, 1.25 and 1.667. If you spec-
ify the argument other, then you must also provide a value argument which
will be the actual multiplier value. Note that, contrary to other parameters,
Spacing implies the generation of specific LATEX code, using the LATEX package
setspace.

Spellcheck [0, 1] Allow spell-checking paragraphs of this style. Default is true.

42

5.3. The layout file format

StepParentCounter [0 ,1] Steps the parent counter of a given counter at the begin-
ning of a new sequence of layouts. This is currently only useful when LabelType
is Enumerate.

TextFont The font used for the text body . See sec. 5.3.13.

TocLevel [int=3] The level of the style in the table of contents. This is used for
automatic numbering of section headings.

ToggleIndent [default, always, never] This tag determines whether the first line
indentation of this paragraph can be toggled via the Paragraph settings dia-
log. If default is set, indentation can be toggled if the document settings
use “indent” paragraph style, with always, indentation can always be toggled,
notwithstanding the document settings, with never, indentation can never be
toggled.

TopSep [float=0] The vertical space with which the very first of a chain of para-
graphs with this style is separated from the previous paragraph. If the previous
paragraph has another style, the separations are not simply added, but the
maximum is taken.

5.3.8. Internationalization of Paragraph Styles
LYX has long supported internationalization of layout information, but, until version
2.0, this applied only to the user interface and not to, say, PDF output. Thus, French
authors were forced to resort to ugly hacks if they wanted ‘Théorème 1’ instead of
‘Theorem 1’. Thanks to Georg Baum, that is no longer the case.

If a Style defines text that is to appear in the typeset document, it may use
LangPreamble and BabelPreamble to support non-English and even multi-language
documents correctly. The following excerpt (from the theorems-ams.inc file) shows
how this works:

Preamble

\theoremstyle{remark}
\newtheorem{claim}[thm]{\protect\claimname}

EndPreamble
LangPreamble

\providecommand{\claimname}{_(Claim)}
EndLangPreamble
BabelPreamble

\addto\captions$$lang{\renewcommand{\claimname}{_(Claim)}}
EndBabelPreamble

In principle, any legal LATEX may appear in the LangPreamble and BabelPreamble
tags, but in practice they will typically look as they do here. The key to correct

43

5. Installing New Document Classes

translation of the typeset text is the definition of the LATEX command \claimname
and its use in \newtheorem.

The LangPreamble tag provides for internationalization based upon the overall
language of the document. The contents of the tag will be included in the preamble,
just as with the Preamble tag. What makes it special is the use of the “function”
_(), which will be replaced, when LYX produces LATEX output, with the translation
of its argument into the document language.

The BabelPreamble tag is more complex, since it is meant to provide support
for multi-language documents and so offers an interface to the babel package. Its
contents will be added to the preamble once for each language that appears in the
document. In this case, the argument to _() will be replaced with its translation into
the language in question; the expression $$lang is replaced by the language name
(as used by the babel package).

A German document that also included a French section would thus have the
following in the preamble:

\addto\captionsfrench{\renewcommand{\claimname}{Affirmation}}
\addto\captionsngerman{\renewcommand{\claimname}{Behauptung}}
\providecommand{\claimname}{Behauptung}

LATEX and babel will then conspire to produce the correct text in the output.
One important point to note here is that the translations are provided by LYX it-

self, through the file layouttranslations. This means, in effect, that LangPreamble
and BabelPreamble are really only of use in layout files that are provided with LYX,
since text entered in user-created layout files will not be seen by LYX’s internation-
alization routines unless the layouttranslations file is modified accordingly. That
said, however, any layout created with the intention that it will be included with
LYX should use these tags where appropriate. Please note that the paragraph style
translations provided by LYX will never change with a minor update (e. g. from ver-
sion 2.1.x to 2.1.y). It is however quite likely that a major update (e. g. from 2.0.x
to 2.1.0) will introduce new translations or corrections.

5.3.9. Floats
It is necessary to define the floats (figure, table, . . .) in the text class itself.
Standard floats are included in the file stdfloats.inc, so you may have to do no
more than add

Input stdfloats.inc

to your layout file. If you want to implement a text class that proposes some other
float types (like the AGU class bundled with LYX), the information below will hope-
fully help you:

44

5.3. The layout file format

AllowedPlacement [string=!htbpH] Allowed placement options for this float type.
The value is a string of placement characters. Possible characters include: h
(“here if possible”), t (“top of page”), b (“bottom of page”), p (“page of floats”),
H (“here definitely”) and ! (“ignore LaTeX rules”). The order of the characters
in the string does not matter. If no placement options are allowed, use the string
none.

AllowsSideways [0, 1] Defines whether the float allows to be rotated via the LATEX-
package rotfloat (sidewaysfloat). Set to 0 if the float does not support this
feature.

AllowsWide [0, 1] Defines whether the float has a starred variant that spans columns
in a two column paragraph. Set to 0 if the float does not support this feature.

Extension [string=””] The file name extension of an auxiliary file for the list of
figures (or whatever). LATEX writes the captions to this file.

GuiName [string=””] The string that will be used in the menus and also for the
caption. This is translated to the current language if babel is used.

HTML* These tags control the XHTML output. See sec. 5.4.

IsPredefined [0, 1] Indicates whether the float is already defined in the document
class or if instead the LATEX package float needs to be loaded to define it on-
the-fly. The default is 0, which means: float is used. It should be set to 1 if
the float is already defined by the LATEX document class.

ListCommand [string=””] The command used to generate a list of floats of this
type; the leading ‘\’ must be omitted. This must be given if UsesFloatPkg is
false, since there is no standard way to generate this command. It is ignored if
UsesFloatPkg is true, since in that case there is a standard way to define the
command.

ListName [string=””] A title for a list of floats of this kind (list of figures, tables,
or whatever). It is used for the screen label within LYX, it is used by LATEX for
the title and it is used as the title in the XHTML output. It will be translated
to the document language.

NumberWithin [string=””] This (optional) argument determines whether floats of
this class will be numbered within some sectional unit of the document. For
example, if NumberWithin is set to “chapter”, the floats will be numbered
within chapters.

Placement [string=””] The default placement for the given class of floats. The
string should be as in standard LATEX: t, b, p and h for top, bottom, page,
and here, respectively.17 On top of that there is a new type, H, which does not

17Note that the order of these letters in the string is irrelevant, like in LATEX.

45

5. Installing New Document Classes

really correspond to a float, since it means: put it “here” and nowhere else.
Note however that the H specifier is special and, because of implementation
details, cannot be used in non-built in float types. If you do not understand
what this means, just use “tbp”.

PrettyFormat [string=””] A format for use with formatted references to this counter.
For example, one might want to have references to tables appear as “Table 2”.
The string may contain “##” or a counter specification. (See the documenta-
tion for LabelString in sec. 5.3.12.) The former will be replaced by the counter
number itself. So, for sections, it would be: Section ##, or perhaps: section
\arabic{section} (which might render as: section 2.7).

RefPrefix [string] The prefix to use when creating labels referring to floats of this
type. This allows the use of formatted references. Note that you can remove
any RefPrefix set by a copied style by using the special value “OFF”, which
must be all caps.

Requires [string] As with paragraph styles, see sec. 5.3.7.

Style [string=””] The style used when defining the float using \newfloat.

Type [string=””] The “type” of the new class of floats, like program or algorithm.
After the appropriate \newfloat, commands such as \begin{program} or
\end{algorithm*} will be available.

UsesFloatPkg [0, 1] Specifies whether this float is defined using the LATEX package
float, either by the class file, another package or on-the-fly by LYX itself.

Note that defining a float with type type automatically defines the corresponding
counter with name type .

5.3.10. Flex insets and InsetLayout
Flex insets come in two different kinds:

• character style (CharStyle): These define semantic markup corresponding to
such LATEX commands as \noun and \code.

• user custom (Custom): These can be used to define custom collapsible insets,
similar to TEX code, footnote, and the like. An obvious example is an endnote
inset, which is defined in the endnote module.

Flex insets are defined using the InsetLayout tag, which shall be explained in a
moment.

The InsetLayout tag also serves another function: It can be used to customize
the general layout of many different types of insets. Currently, InsetLayout can be
used to customize the layout parameters for footnotes, marginal notes, note insets,

46

5.3. The layout file format

TEX code (ERT) insets, branches, listings, indexes, boxes, tables, algorithms, URLs,
and captions, as well as to define Flex insets.

The InsetLayout definition must begin with a line of the form:

InsetLayout <type>

Here <Type> indicates the inset whose layout is being defined, and here there are four
cases.

1. The layout for a pre-existing inset is being modified. In this case, can be <Type>
any one of the following: Algorithm, Branch, Box, Box:shaded, Caption:Standard,
ERT, Figure, Foot, Index, Info, Info:menu, Info:shortcut, Info:shortcuts,
Listings, Marginal, Note:Comment, Note:Note, Note:Greyedout, Table, or
URL.

2. The layout for a Flex inset is being defined. In this case, <Type> must be of
the form “Flex:<name>”, where name may be any valid identifier not used by a
pre-existing Flex inset. The identifier may include spaces, but in that case the
whole thing must be wrapped in quotes. Note that the definition of a flex inset
must also include a LyXType entry, declaring which type of inset it defines.

3. The layout for user specific branch is being defined. In this case, <Type> must
be of the form “Branch:<name>”, where name may be any valid identifier of
branch defined in user’s document. The identifier may include spaces, but in
that case the whole thing must be wrapped in quotes. The main purpose of
this feature is to allow LATEX wrapping around specific branches as user needs.

4. The layout of a user (or class) specific caption is being defined. In this case,
<Type> must be of the form “Caption:<name>”, where name specifies the name
of the caption as it appears in the menu. Have a look at the standard cap-
tion (Caption:Standard), the specific captions of the KOMA-Script classes
(Caption:Above, Caption:Below) or the module Multilingual Captions
(Caption:Bicaption) for applications.

The InsetLayout definition can contain the following entries:

AddToToc [string=""] This inset will appear in the table of contents of the given
type. An empty string disables. See also the OutlinerName and the IsTocCap-
tion commands. This is only implemented for Flex insets. Default: disabled.

AllowedInInsets Includes a comma-separated list of insets to which this inset can
be inserted. Must be ended by “EndAllowedInInsets”. If you you also want
the insertion to be allowed in specific arguments of the target insets, append
the argument name after @ (e. g., My_Inset@post:1). Note that this cur-
rently only supports immediately containing insets (no deeper nesting). See
also AllowedInLayouts.

47

5. Installing New Document Classes

AllowedInLayouts Includes a comma-separated list of layouts within which this
inset can be inserted. Must be ended by “EndAllowedInLayouts”. Note that
this currently only supports immediately containing layouts (no deeper nesting).
See also AllowedInInsets.

AllowedOccurrences [int] If AllowedInInsets or AllowedInLayouts has been de-
fined, this can be used to determine how many times the inset can be inserted
to a given inset or the paragraph (group).

AllowedOccurrencesPerItem [0 , 1] If this is set to true, AllowedOccurrences ap-
plies to single paragraphs if we are in a list-type environment (with \items).

Argument [int] Defines argument number of a command/environment associated
with the current layout. The definition must end with EndArgument. See
sec. 5.3.11 for more information.

BabelPreamble Preamble for changing language commands; see sec. 5.3.8.

BgColor [<name>] The color for the inset’s background. See Appendix B for a list of
the available color names.

ContentAsLabel [0 , 1] Whether to use the content of the inset as the label, when
the inset is closed. Default is false.

CopyStyle [<type>] As with paragraph styles, see sec. 5.3.7. Note that you need to
specify the complete type, e. g. CopyStyle Flex:<name>.

CustomPars [0 , 1] Indicates whether the user may employ the Paragraph Settings
dialog to customize the paragraph.

Decoration can be Classic, Minimalistic, or Conglomerate, describing the ren-
dering style used for the inset’s frame and buttons. Footnotes generally use
Classic, ERT insets generally Minimalistic, and character styles Conglomerate.

Display [0, 1] Only useful if LatexType is Environment. Indicates whether the en-
vironment will stand on its own in the output or will appear inline with the sur-
rounding text. If set to false, it is supposed that the LATEX environment ignores
white space (including one newline character) after the \begin{LatexName }
and \end{LatexName } tags. Default is true.

EditExternal [0,1] Allow the contents of the inset to be edited externally (using
whatever editor is defined for the document’s output format).

End Required at the end of the InsetLayout declarations.

Font The font used for both the text body and the label. See sec. 5.3.13. Note that
defining this font automatically defines the LabelFont to the same value, so
define this first and define LabelFont later if you want them to be different.

48

5.3. The layout file format

FixedWidthPreambleEncoding [0 , 1] Force a fixed width encoding for the translated
contents of BabelPreamble and LangPreamble code generated by this layout.
This is needed for special LATEX-packages like listings that do not work with
variable width encodings such as utf8. This setting is ignored if fully Unicode
aware LATEX backends such as XeTEX or LuaTEX are used.

ForceLocalFontSwitch [0 , 1] When using babel, always use a local font switch
(\foreignlanguage), never a global one (such as \selectlanguage).

ForceLTR [0 , 1] Force the “latex” language, leading to Left-to-Right (Latin) output,
e. g. in TEX code or URL. A kludge.

ForceOwnlines [0 , 1] Force a line break in the LATEX output before the inset starts
and after the inset ends. This assures the inset itself is output on its own lines,
for parsing purposes.

ForcePlain [0 , 1] Indicates whether the PlainLayout should be used or, instead,
the user can change the paragraph style used in the inset. Default is false.

FreeSpacing [0 , 1] As with paragraph styles, see sec. 5.3.7.

HTML* These tags control the XHTML output. See sec. 5.4.

InheritFont [0, 1] The font inside the inset is inherited from the parent for LATEX
export if this parameter is 1, as well as on screen. Otherwise the document
default font is used.

InToc [0 , 1] Whether to include the contents of this inset in the strings generated for
the ‘Outline’ pane for all table of contents, regardless of the AddToToc setting.
One would not, for example, want the content of a footnote in a section header
to be included in the TOC displayed in the outline, but one would normally
want the content of a character style displayed. Default is false: not to include.

IsTocCaption [0 , 1] If this is set to 1 and AddToToc is enabled, the inset adds a
summary of its contents in its item in the table of contents. Otherwise, only
the label appears.

KeepEmpty [0, 1] As with paragraph styles, see sec. 5.3.7.

LabelFont The font used for the label. See sec. 5.3.13. Note that this definition can
never appear before Font, lest it be ineffective.

LabelString [string=””] What will be displayed on the button or elsewhere as the
inset label. Some inset types (TEX code and Branch) modify this label on the
fly.

LangPreamble Language dependent preamble; see sec. 5.3.8.

49

5. Installing New Document Classes

LatexName [<name>] The name of the corresponding LATEX stuff. Either the environ-
ment or command name.

LatexParam [<parameter>] The optional parameter for the corresponding LatexName
stuff, including possible bracket pairs like []. This parameter cannot be changed
from within LYX (use Argument for customizable parameters). It will be output
as is after all LATEX Arguments.

LatexType [Command, Environment, None] How the style should be translated into
LATEX.18

None means nothing special

Command means \LatexName {...}

Environment means \begin{LatexName }...\end{LatexName }

Putting the last few things together, the LATEX output will be either:

\LatexName[LatexParam]{...}

or:

\begin{LatexName}[LatexParam] ... \end{LatexName}

depending upon the LATEX type.

LeftDelim [string] A string that is put at the beginning of the layout content. A
line break in the output can be indicated by
.

LyxType Can be charstyle, custom, or end (indicating a dummy definition ending
definitions of charstyles, etc). This entry is required in and is only meaningful
for Flex insets. Among other things, it determines on which menu this inset
will appear. Setting LyxType to charstyle will automatically set MultiPar to
false and ForcePlain to true. MultiPar can be set to true, or ForcePlain to
false, for charstyle insets by setting it after you set the LyxType.

MenuString [string] A dedicated string for the menu. You can define an acceler-
ator by appending the respective character to the string, divided by “|” (e. g.
“My Inset|M”). This specification is optional. If it is not given the inset name
as specified in the type declaration will be used instead for the menu.

MultiPar [0 , 1] Whether multiple paragraphs are permitted in this inset. This will
also set CustomPars to the same value and ForcePlain to the opposite value.
These can be reset to other values, if they are used after MultiPar. Default is
true.

18LatexType is perhaps a bit misleading, since these rules apply to SGML classes too. Visit the
SGML class files for specific examples.

50

5.3. The layout file format

NeedProtect [0 , 1] Whether fragile commands in this inset should be \protect’ed.
(Note: This is not whether the command should itself be protected.) Default
is false.

NeedCProtect [0 , 1] This causes macros that contain this inset to be protected with
\cprotect (cf. package cprotect) if necessary and thus allows (some) verbatim
stuff in macros. Default is false.

NeedMBoxProtect [0 , 1] Whether specific commands in this inset (such as \cite and
\ref) should be protected in an \mbox. This is particularly needed for insets
that draw on ulem or soul commands which parse their content in complex ways.
Default is false.

NewlineCmd [string] Option to define a different command (from the default \\)
to be used for line breaks. The initial backslash must not be specified.

NoInsetLayout [<layout>] Deletes an existing InsetLayout.

ObsoletedBy [<layout>] Name of an InsetLayout that has replaced this InsetLayout.
This is used to rename an InsetLayout, while keeping backward compatibility.

ParbreakIgnored [0 , 1] If this is set to 1, paragraph breaks will be ignored in the
output. This might be useful for insets where the content should be alignable
on different lines only in the LYX workarea, without any effect in the output.

ParbreakIsNewline [0 , 1] As with paragraph styles, see sec. 5.3.7. Default is false.

PassThru [0 , 1] As with paragraph styles, see sec. 5.3.7. Default is false.

Preamble As with paragraph styles, see sec. 5.3.7.

RefPrefix [string] The prefix to use when creating labels referring to insets of this
type. This allows the use of formatted references.

Requires [string] As with paragraph styles, see sec. 5.3.7.

ResetArgs [0 , 1] Resets the LATEX arguments of this layout (as defined via the
Argument tag). This is useful if you have copied a style via CopyStyle, but you
do not want to inherit its (required and optional) arguments.

ResetsFont [0 , 1] If 1, font changes are redone inside the respective inset (in the
output) even if the inset itself is in the context of this font changes (e. g.,
\textbf{Sourrounding text \myinset{\textbf{content}}...} rather than
\textbf{Sourrounding text \myinset{content}...}. Setting this makes
sense for commands that internally reset font settings (e. g., footnotes). Note
that wrongly setting this might lead to unwanted result (e. g., with \emph{Sourrounding
text \myinset{\emph{content}}...}, content is upright, as \emph toggles.
Default is 0: font changes are not redone inside the inset.

51

5. Installing New Document Classes

RightDelim [string] A string that is put at the end of the layout content. A line
break in the output can be indicated by
.

Spellcheck [0, 1] Allow spell-checking the contents of this inset. Default is true.

5.3.11. Arguments
Both paragraph styles and inset layouts allow for arguments as well as the main
content. This is especially useful for things like section headings and only makes sense
with LATEX. Each (optional or required) argument of a command or environment—
except for the required argument that is associated with the content—has a separate
definition, where the number specifies the order of the arguments. The definition
must end with EndArgument. So a command with two optional arguments looks like:

Argument 1

...

EndArgument

Argument 2

...

EndArgument

Inside the Argument definition, the following specifications are possible:

• LabelString [string] The string that will appear both in the menu (to insert
this argument) and on the argument inset button (unless you also specify a sep-
arate MenuString). For the menu, you can define an accelerator by appending
the respective character to the string, divided by “|” (e. g. “Short Title|S”).

• MenuString [string] A separate string for the menu. You can define an
accelerator by appending the respective character to the string, divided by “|”
(e. g. “Short Title|S”). This specification is optional. If it is not given the
LabelString will be used instead for the menu.

• Tooltip [string] A longer explanatory text that appears in the tooltip when
hovering over the argument inset.

• Mandatory [0 , 1] Declare if this is a mandatory (1) or an optional (0) argument.
Mandatory arguments will be output empty if not given, while optional argu-
ments will not be output at all. By default, mandatory arguments are delimited
by {...}, while optional arguments are delimited by [...]

• NewlineCmd [string] Option to define a different command (from the default
\\) to be used for line breaks. The initial backslash must not be specified.

52

5.3. The layout file format

• Requires [int=0] defines another argument or arguments (by their number)
which this argument requires to be output if it is itself output. E. g., in LATEX
commands, optional arguments often require previous optional arguments to
be output (at least empty), as in \command[][argument]{text}. This can be
achieved by the statement Requires 1 within Argument 2. If multiple argu-
ments are required, separate them by comma (e.g., Requires 1,2).

• LeftDelim [string] defines a custom left delimiter (instead of { or [). A line
break in the output can be indicated by
.

• RightDelim [string] defines a custom right delimiter (instead of } or]). A
line break in the output can be indicated by
.

• DefaultArg [string] defines an argument that is inserted if and only if no user-
specified arguments were given, i. e. if no argument inset has been inserted (note
that also an empty argument inset omits the DefaultArg). Multiple arguments
need to be separated by comma.

• PresetArg [string] defines an argument that is inserted in any case (alone
or in addition to user-specified arguments). Multiple arguments need to be
separated by comma.

• Font The font used for the argument content, see sec. 5.3.13.

• FreeSpacing [0 , 1] As with paragraph styles, see sec. 5.3.7.

• LabelFont The font used for the label; see sec. 5.3.13.

• Decoration [Classic, Minimalistic, Conglomerate] describes the render-
ing style used for the inset’s frame and buttons.

• AutoInsert [int=0] If this is set to 1, this argument is automatically inserted
when the respective style is selected.

• InsertOnNewline [int=0] If this is set to 1, this argument will be inserted on
a new line with AutoInsert (only available within Flex insets).

• InsertCotext [int=0] If this is set to 1, this argument will be inserted with
a copy of the co-text (either selected text or the whole paragraph) as content.

• PassThru [inherited, true, false] Whether the contents of this argument
should be output in raw form, meaning without special translations that LATEX
would require. By default, the PassThru status is inherited by the inset or
paragraph layout the argument belongs to, true and false change the status for
the given argument only.

53

5. Installing New Document Classes

• PassThruChars [string of characters] Defines individual characters
that should be output in raw form, meaning without special translations that
LATEX would require. Note that, contrary to PassThru, this needs to be explic-
itly defined for arguments. That is, arguments do not inherit PassThruChars
from their parent inset or layout.

• IsTocCaption [0 , 1] If this is set to 1, the argument will output its content in
the corresponding item in the table of contents. See AddToToc.

By default, the text entered in the LYX workarea in the respective layout is the
last (mandatory) argument of a command if the LatexType is Command. However,
arguments with the prefix post: are output after this workarea argument. Note
that post-argument numbering restarts at 1, so the first argument following the
workarea argument is post:1. Post-arguments are ignored in any other LatexType
than Command.

Arguments for list \items (as in \item[foo]) have the prefix item: followed by
the number (e. g. Argument item:1).

Finally, there is a special argument type with the prefix listpreamble:. It is
not really an argument, but uses the argument interface (thus, the prefix is also
followed by a number, e. g. Argument listpreamble:1). As the name implies, it is
targeted at lists such as Itemize, Enumerate, Description, or Bibliography. Its content
will be output at the list start, before the first \item, on an own line (a place that is
otherwise not accessible in LYX). This way, users can insert redefinitions (of lengths
etc.) to individual lists. By default, these arguments do not have a delimiter.

5.3.12. Counters
It is necessary to define the counters (chapter, figure, . . .) in the text class itself.
The standard counters are defined in the file stdcounters.inc, so you may have to
do no more than add

Input stdcounters.inc

to your layout file to get them to work. But if you want to define custom counters,
then you can do so. The counter declaration must begin with:

Counter CounterName

where of course ‘CounterName’ is replaced by the name of the counter. And it must
end with “End”. The following parameters can also be used:

InitialValue [int=1] Sets the initial value for the counter, to which it will be reset
whenever that happens. Normally, one will want the default, 1.

LabelString [string=””] When defined, this string defines how the counter is dis-
played. Setting this value sets LabelStringAppendix to the same value. The
following special constructs can be used in the string:

54

5.3. The layout file format

• \thecounter will be replaced by the expansion of the LabelString (or
LabelStringAppendix) of the counter counter.

• counter values can be expressed using LATEX-like macros
\numbertype {counter }, where numbertype can be:19 arabic: 1, 2,
3,. . . ; alph for lower-case letters: a, b, c, . . . ; Alph for upper-case letters:
A, B, C, . . . ; roman for lower-case roman numerals: i, ii, iii, . . . ; Roman for
upper-case roman numerals: I, II, III. . . ; hebrew for hebrew numerals.

If LabelString is not defined, a default value is constructed as follows: if the counter
has a parent counter parent (defined via Within), the string
\theparent.\arabic{counter} is used; otherwise the string \arabic{counter} is
used.

LabelStringAppendix [string= “”] Same as LabelString, but for use in the Ap-
pendix.

LaTeXName [string = “”] The counter name as used in LATEX. (e.g., in LYX, there
is a counter named ‘theorem’, but it is output to LATEX as ‘thm’.)

PrettyFormat [string=””] A format for use with formatted references to this counter.
For example, one might want to have references to section numbers appear as
“Section 2.4”. The string may contain “##” or a counter specification as in
LabelString. The former will be replaced by the counter number itself. So, for
sections, it would be: Section ##, or perhaps: \S\arabic{section} (which
might render as §2.7).

RefFormat [string, string] For use with ‘formatted references’, specifically when
a single counter is used with multiple sorts of styles. For example, the theorem
counter is often used for all sorts of theorem-like environments: Theorem,
Lemma, etc. The first argument gives a prefix used in the labels (e.g., “thm” or
“lem”), and the second a formatting string, as for LabelString or PrettyFormat.
If this is not given, then PrettyFormat is used.

Within [string=””] If this is set to the name of another counter, the present counter
will be reset every time the other one is increased. For example, subsection
is numbered inside section.

5.3.13. Font description
A font description looks like this:

Font or LabelFont or DefaultFont
...

EndFont
19Actually, the situation is a bit more complicated: any numbertype other than those described

below will produce arabic numerals. It would not be surprising to see this change in the future.

55

5. Installing New Document Classes

The following commands are available:

Color [string] See appendix Appendix B for valid arguments.

Family [Roman , Sans, Typewriter]

Misc [string] Valid arguments are: emph, noun, strikeout, underbar, uuline,
uwave, no_emph, no_noun, no_strikeout, no_bar, no_uuline and no_uwave.
Each of these turns on or off the corresponding attribute. For example, emph
turns on emphasis, and no_emph turns it off.
If the latter seems puzzling, remember that the font settings for the present
context are generally inherited from the surrounding context. So no_emph would
turn off the emphasis that was anyway in effect, say, in a theorem environment.

Series [Medium , Bold]

Shape [Up , Italic, SmallCaps, Slanted]

Size [tiny, small, normal , large, larger, largest, huge, giant]

5.3.14. Cite engine description
The CiteEngine blocks, as used mainly in cite engine files (see sec. 5.2.6), define the
citation commands provided by a specific “cite engine”. A cite engine, in LYX terms,
is way specific way to format citations, using numbers, author names and/or years.
Currently, LYX supports three such engine types, namely:

1. default: the default BibTEX way to format citations, a simple numeric style
(e. g., “[1]”)

2. authoryear: Harvard-styled citations using author names and publication year
(e. g., “Smith and Miller (2017b)”)

3. numerical: extended numerical citations that also allow for author or title next
to the number (e. g., “Smith and Miller [1]”)

CiteEngine blocks look like this:

CiteEngine default
cite
Citep*[][]
citeyearpar[][]=parencite*
...

End

56

5.3. The layout file format

The tag following CiteEngine denotes the engine. The individual lines respectively
define a cite command or cite command paradigm supported by this engine. The line
can be as simple as a cite command that is used both to name the respective LYX
command and the LATEX output or more complex in order to differentiate things.
The full syntax is:

LyXName|alias$*<!_stardesc!_stardesctooltip>[][]=latexcmd

• LyXName: The name as used in the *.lyx file.
For portability reasons, we try to use the same name for same-formatted com-
mands in different cite packages (thus many names stem from natbib, and thus
we need to differentiate a latexcmd sometimes, if the LATEX command names
differ).

• alias: a (comma-separated) list of commands that fall back to the given
LyXName in the current engine. This eases the switch of citation packages and
engines. The alias can be compared to ObsoletedBy in layout definitions.

• latexcmd: The actual LATEX command that is output.

Alias and latexcmd are optional. If no latexcmd is given, the LyXName will be
output to LATEX.

Note further:

• Capitalization indicates that the command also has a capitalized form (\Latexcmd
vs. \latexcmd). These usually enforce up-casing of name prefixes (von Goethe
⇒ Von Goethe).

• Brackets [] indicate the number of optional arguments (there can be 0–2).

• A star * indicates there is a starred version of the command (\latexcmd* vs.
\latexcmd).
By default, the starred version means: Output all authors even if it should be
shortened with “et al.” due to the MaxCiteNames threshold.
If the star has a different meaning for a given command, it can be specified in
angle brackets: <!_stardesc!_stardesctooltip>. Maximal two translatable
macro keywords, marked by the prefix !_, can be given. The first points to
the string that replaces the “Full aut&hor list” checkbox label in the citation
dialog, the second one to an optional tool tip for this checkbox.
Note that these two macros have to be defined in a CiteFormat (see next
section), dropping the ! from the prefix, like this:

_stardesc Sta&rred command label
_stardesctooltip Tooltip for the starred command checkbox.

57

5. Installing New Document Classes

• A dollar sign $ indicates that this command features “qualified citation lists”.
This is a Biblatex-specific feature for multi-reference citations where an individ-
ual pre- and postnote can be given to each reference in the list. Please refer to
the Biblatex manual for details.

If you want to add a cite command to a cite engine (e. g., add a specific command pro-
vided by a class), you can use AddToCiteEngine <engine type> ... End. Note
that only cite commands that do not exist yet are added.

5.3.15. Cite format description
The CiteFormat blocks are used to describe how bibliographic information should be
displayed, both within LYX itself (in the citation dialog and in tooltips, for example)
and in XHTML output. Such a block might look like this:

CiteFormat
article ...
book ...

End

or

CiteFormat
cite ...
citet*[][] ...

End

In the first case, the individual lines define how the bibliographic information asso-
ciated with an article or book, respectively, is to be displayed, and such a definition
can be given for any ‘entry type’ that might be present in a BibTEX file. LYX defines
a default format in the source code that will be used if no specific definition has
been given. LYX predefines several formats in the file stdciteformats.inc, which
is included in most of LYX’s document classes.

In the second case, the lines define how a specific citation command (in the example
\cite, \citet) is to be displayed on the citation inset label, in the citation dialog,
menu or XHTML output. LYX defines such formats for the citation style variants it
supports via Document ▷ Setting ▷ Bibliography. . . in specific *.citeengine files that
are shipped with LYX (see sec. 5.2.6).

The definitions use a simple language that allows BibTEX keys to be replaced
with their values. Keys should be enclosed in % signs, e.g.: %author%. So a simple
definition might look like this:

misc %author%, “%title%”.

58

5.3. The layout file format

This would print the author, followed by a comma, followed by the title, in quotes,
followed by a period.

Of course, sometimes you may want to print a key only if it exists. This can be
done by using a conditional construction, such as: {%volume%[[vol. %volume%]]}.
This says: If the volume key exists, then print “vol. ” followed by the volume key. It
is also possible to have an else clause in the conditional, such as:
{%author%[[%author%]][[%editor%, ed.]]}.
Here, the author key is printed if it exists; otherwise, the editor key is printed,
followed by “, ed.” Note that the key is again enclosed in % signs; the entire conditional
is enclosed in braces; and the if and else clauses are enclosed in double brackets, “[[“
and “]]”. There must be no space between any of these.

Next to the entry keys, there are some special keys that can be used for these
conditionals:

• {%dialog%[[true]][[false]]}: process the “true” part for dialogs and menus,
the “false” part for other contexts (workarea, export)

• {%export%[[true]][[false]]}: process the “true” part for export and menus,
the “false” part for other contexts (workarea, dialog)

• {%next%[[true]]}: process the “true” part if another item follows (e. g., in a
citation with multiple keys)

• {%second%[[true]][[false]]}: process the “true” if this is the second of
multiple items, else the “false” part

• {%ifstar%[[true]][[false]]}: process the “true” part for starred citation
commands (such as \cite*), the false part for unstarred

• {%ifentrytype:<type>%[[true]][[false]]}: process the “true” if the cur-
rent entry type matches <type>, else the false part (e.g., in a citation definition:
{%ifentrytype:book%[[this is a book]][[this is no book]]})

• {%ifmultiple:<authortype>%[[true]][[false]]}: process the “true” if the
current author type (author, editor etc.) has multiple authors, else the false part
(e.g., in a bibliography definition: {%ifmultiple:editor%[[eds.]][[ed.]]})

• {%ifqualified%[[true]][[false]]}: process the “true” part if the current
citation is a qualified citation list (a specific Biblatex format for multi-reference
citations), the false part if this is not the case.

We said that %author% prints the author key as it is recorded in the bibliography
file. This might not be what you want, since it will result in a string such as “Miller,
Peter and Smith, Mary and White, Jane” (since “and” is used by BibTEX to delimit
authors). LYX therefore provides some methods to get properly formatted name lists
(which will also get translated). The following keys are provided:

59

5. Installing New Document Classes

1. For name lists with pre- and surname, suitable for the main authors/editors
of a bibliography item. The <nametype> part denotes the kind of list that is
requested (e.g. <nametype:author>):

• %abbrvnames:<nametype>%: Provides a name list which is abbreviated
(with “et al.”) when MaxCiteNames is reached.

• %fullnames:<nametype>%: Provides a full name list (never abbreviated
with “et al.”).

• %forceabbrvnames:<nametype>%: Provides a name list which is always
abbreviated (with “et al.”) irrespective of MaxCiteNames.

2. Alternative name lists with pre- and surname, if the order of pre- and surname
inside the bibliography item differs (as in: “Miller, John: Some text, in: Mary
Smith, ed.: A volume”):

• %abbrvbynames:<nametype>%: Provides a name list which is abbreviated
(with “et al.”) when MaxCiteNames is reached.

• %fullbynames:<nametype>%: Provides a full name list (never abbreviated
with “et al.”).

• %forceabbrvbynames:<nametype>%: Provides a name list which is always
abbreviated (with “et al.”) irrespective of MaxCiteNames.

3. And finally name lists which consist of family names only, as used in author-
year citation labels. These do not take a <nametype> part, but always return
either an author list or, if this does not exist, an editor list (as common in
author-year labels):

• %abbrvciteauthor%: Provides a name list which is abbreviated (with “et
al.”) when MaxCiteNames is reached.

• %fullciteauthor%: Provides a full name list (never abbreviated with “et
al.”).

• %forceabbrvciteauthor%: Provides a name list which is always abbrevi-
ated (with “et al.”) irrespective of MaxCiteNames.

The order of pre- and surname in the former two lists can be adjusted by these
macros:

• !firstnameform %surname%, %prename% (first author in lists of type 1)

• !othernameform %surname%, %prename% (other authors in lists of type 1)

• !firstbynameform %prename% %surname% (first author in lists of type 2)

• !otherbynameform %prename% %surname% (other authors in lists of type 2)

60

5.3. The layout file format

This allows you to configure namings like “Miller, Peter and Mary Smith: . . . , in:
John Doe and Pat Green, eds.:. . . ”.

There is one other piece of syntax available in definitions, which looks like this:
{!<i>!}. This defines a piece of formatting information that is to be used when
creating “rich text”. Obviously, we do not want to output HTML tags when writing
plain text, so they should be wrapped in “{!” and “!}”.

Two special sorts of definitions are also possible in a CiteFormat block. An example
of the first would be:

!quotetitle “%title%”

This is an abbreviation, or macro, and it can be used by treating it as if it were a
key: %!quotetitle%. LYX will treat %!quotetitle% exactly as it would treat its
definition. So, let us issue the obvious warning. Do not do this:

!funfun %funfun%

or anything like it. LYX shouldn’t go into an infinite loop, but it may go into a long
one before it gives up.

The second sort of special definition might look like this:

B_pptext pp.

This defines a translatable piece of text, which allows relevant parts of the bibliogra-
phy or citation to be translated. It can be included in a definition by treating it as a
key: %B_pptext%. Note that there are two different translation paths: All definitions
starting with B_, such as in the example above, will be translated to the currently
active buffer language (so the translation will match the generated document). All
definitions starting with underscore only will be translated to the GUI language. This
is the proper translation for strings that only occur in the dialogs or on buttons, such
as this one:

_addtobib Add to bibliography only.

Several of these translatable strings are predefined in stdciteformats.inc and the
diverse *.citeengine files. Note that these are not macros, in the sense just defined.
They will not be expanded.

So here then is an example that uses several of these features:
!authoredit {%author%[[%author%,]][[{%editor%[[%editor%, %B_edtext%,]]}]]}

This defines a macro that prints the author, followed by a comma, if the author
key is defined, or else prints the name of the editor, followed by the B_edtext or its
translation (it is by default “ed.”), if the editor key is defined. Note that this is in
fact defined in stdciteformats.inc, so you can use it in your own definitions, or
re-definitions, if you load that file first.

61

5. Installing New Document Classes

5.4. Tags for XHTML output
As with LATEX or DocBook, the format of LYX’s XHTML output is also controlled
by layout information. In general, LYX provides sensible defaults and, as mentioned
earlier, it will even construct default CSS style rules from the other layout tags. For
example, LYX will attempt to use the information provided in the Font declaration
for the Chapter style to write CSS that will appropriately format chapter headings.

In many cases, then, you may not have to do anything at all to get acceptable
XHTML output for your own environments, custom insets, and so forth. But in
some cases you will, and so LYX provides a number of layout tags that can be used
to customize the XHTML and CSS that are generated.

Note that there are two tags, HTMLPreamble and AddToHTMLPreamble that may
appear outside style and inset declarations. See sec. 5.3.5 for details on these.

5.4.1. Paragraph styles
The sort of XHTML LYX outputs for a paragraph depends upon whether we are
dealing with a normal paragraph, a command, or an environment, where this is itself
determined by the contents of the corresponding LATEXType tag.

For a command or normal paragraph, the output XHTML has the following form:

<tag attr=”value”>
<labeltag attr=”value”>Label</labeltag>
Contents of the paragraph.
</tag>

The label tags are of course omitted if the paragraph does not have a label.
For an environment that is not some sort of list, the XHTML takes this form:

<tag attr=”value”>
<itemtag attr=”value”><labeltag attr=”value”>Environment La-
bel</labeltag>First paragraph.</itemtag>
<itemtag>Second paragraph.</itemtag>
</tag>

Note that the label is output only for the first paragraph, as it should be for a
theorem, for example.

For a list, we have one of these forms:

<tag attr=”value”>
<itemtag attr=”value”><labeltag attr=”value”>List La-
bel</labeltag>First item.</itemtag>
<itemtag attr=”value”><labeltag attr=”value”>List La-
bel</labeltag>Second item.</itemtag>
</tag>

62

5.4. Tags for XHTML output

<tag attr=”value”>
<labeltag attr=”value”>List La-
bel</labeltag><itemtag attr=”value”>First item.</itemtag>
<labeltag attr=”value”>List La-
bel</labeltag><itemtag attr=”value”>Second item.</itemtag>
</tag>

Note the different orders of labeltag and itemtag. Which order we get depends
upon the setting of HTMLLabelFirst: If HTMLLabelFirst is false (the default), you
get the first of these, with the label within the item; if true, you get the second, with
the label outside the item.

The specific tags and attributes output for each paragraph type can be controlled
by means of the layout tags we are about to describe. As mentioned earlier, however,
LYX uses sensible defaults for many of these, so you often may not need to do very
much to get good XHTML output. Think of the available tags as there so you can
tweak things to your liking.

HTMLAttr [string] Specifies attribute information to be output with the main tag.
For example, “class=‘mydiv’”. By default, LYX will output “class=‘layoutname’”,
where layoutname is the LYX name of the layout, made lowercase, for exam-
ple: chapter. This should not contain any style information. Use HTMLStyle
for that purpose.

HTMLClass [string] The CSS class to use for this paragraph. Note that, if the
paragarph is of enumerate or itemize type, then the default will be “lyxenum”
or “lyxitem”, plus “i”, “ii”, “iii”, or “iv”, depending upon the depth. That can
be over-ridden here. However, the suffix will not be added in that case. I.e.,
the CSS class will always be exactly what it is declared to be here.

HTMLForceCSS [0,1] Whether to output the default CSS information LYX gener-
ates for this layout, even if additional information is explicitly provided via
HTMLStyle. Setting this to 1 allows you to alter or augment the generated
CSS, rather than to override it completely. Default is 0.

HTMLInToc [0,1] Whether to include this paragraph (usually, a section or something
of the sort) in the TOC. By default, true, so it should be set to false e.g. for
starred sections.

HTMLItem [string] The tag to be used for individual paragraphs of environments,
replacing itemtag in the examples above. Defaults to div.

HTMLItemAttr [string] Attributes for the item tag. Defaults to
“class=‘layoutname_item’”. This should not contain any style information.
Use HTMLStyle for that purpose.

63

5. Installing New Document Classes

HTMLLabel [string] The tag to be used for paragraph and item labels, replacing
labeltag in the examples above. Defaults to span, unless LabelType is either
Top_Environment or Centered_Top_Environment, in which case it defaults to
div.

HTMLLabelAttr [string] Attributes for the label tag. Defaults to
“class=‘layoutname_label’”. This should not contain any style information.
Use HTMLStyle for that purpose.

HTMLLabelFirst [0,1] Meaningful only for list-like environments, this tag controls
whether the label tag is output before or inside the item tag. This is used, for ex-
ample, in the description environment, where we want ‘<dt>...</dt><dd>...</dd>.
Default is 0: The label tag is output inside the item tag.

HTMLPreamble Information to be output in the <head> section when this style is
used. This might, for example, be used to include a <script> block defining
an onclick handler.

HTMLStyle CSS style information to be included when this style is used. Note that
this will automatically be wrapped in a layout-generated <style> block, so
only the CSS itself need be included. Must end with EndHTMLStyle.

HTMLTag [string] The tag to be used for the main label, replacing tag in the exam-
ples above. Defaults to div.

HTMLTitle [0,1] Marks this style as the one to be used to generate the <title> tag
for the XHTML file. By default, it is false. The stdtitle.inc file sets it to
true for the title environment.

5.4.2. InsetLayout XHTML
The XHTML output of insets can also be controlled by information in layout files.20

Here, too, LYX tries to provide sensible defaults, and it constructs default CSS style
rules. But everything can be customized.

The XHTML LYX outputs for an inset has the following form:

<tag attr=”value”>
<labeltag>Label</labeltag>
<innertag attr=”value”>Contents of the inset.</innertag>
</tag>

If the inset permits multiple paragraphs—that is, if MultiPar is true—then the
contents of the inset will itself be output as paragraphs formatted according to the
styles used for those paragraphs (standard, quote, and the like). The label tag is of
20At present, this is true only for “text” insets (insets you can type into) and is not true for

“command” insets (insets that are associated with dialog boxes).

64

5.4. Tags for XHTML output

course omitted if the paragraph does not have a label and, at present, is always span.
The inner tag is optional and, by default, does not appear.

The specific tags and attributes output for each inset can be controlled by means
of the following layout tags.

HTMLAttr [string] Specifies attribute information to be output with the main tag.
For example, “class=‘myinset’ onclick=‘...’”. By default, LYX will out-
put “class=‘insetname’”, where insetname is the LYX name of the inset,
made lowercase and with non-alphanumeric characters converted to under-
scores, for example: footnote.

HTMLForceCSS [0,1] Whether to output the default CSS information LYX gener-
ates for this layout, even if additional information is explicitly provided via
HTMLStyle. Setting this to 1 allows you to alter or augment the generated
CSS, rather than to override it completely. Default is 0.

HTMLInnerAttr [string] Attributes for the inner tag. Defaults to
“class=‘insetname_inner’”.

HTMLInnerTag [string] The inner tag, replacing innertag in the examples above.
By default, there is none.

HTMLIsBlock [0,1] Whether this inset represents a standalone block of text (such as
a footnote) or instead represents material that is included in the surrounding
text (such as a branch). Defaults to 1.

HTMLLabel [string] A label for this inset, possibly including a reference to a counter.
For example, for footnote, it might be: \arabic{footnote}. This is optional,
and there is no default.

HTMLPreamble Information to be output in the <head> section when this style is
used. This might, for example, be used to include a <script> block defining
an onclick handler.

HTMLStyle CSS style information to be included when this style is used. Note that
this will automatically be wrapped in a layout-generated <style> block, so
only the CSS itself need be included.

HTMLTag [string] The tag to be used for the main label, replacing tag in the exam-
ples above. The default depends upon the setting of MultiPar: If MultiPar is
true, the default is div; if it is false, the default is span.

5.4.3. Float XHTML
The XHTML output for floats too can be controlled by layout information. The
output has the following form:

65

5. Installing New Document Classes

<tag attr=”value”>
Contents of the float.
</tag>

The caption, if there is one, is a separate inset and will be output as such. Its
appearance can be controlled via the InsetLayout for caption insets.

HTMLAttr [string] Specifies attribute information to be output with the main tag.
For example, “class=‘myfloat’ onclick=‘...’”. By default, LYX will out-
put “class=‘float float-floattype’”, where floattype is LYX’s name for
this type of float, as determined by the float declaration (see sec. 5.3.9), though
made lowercase and with non-alphanumeric characters converted to under-
scores, for example: float-table.

HTMLStyle CSS style information to be included when this float is used. Note that
this will automatically be wrapped in a layout-generated <style> block, so
only the CSS itself need be included.

HTMLTag [string] The tag to be used for this float, replacing “tag” in the example
above. The default is div and will rarely need changing.

5.4.4. Bibliography formatting
The bibliography can be formatted using CiteFormat blocks. See sec. 5.3.15 for the
details.

5.4.5. LYX-generated CSS
We have several times mentioned that LYX will generate default CSS style rules for
both insets and paragraph styles, based upon the other layout information that is
provided. In this section, we shall say a word about which layout information LYX
uses and how.

At present, LYX auto-generates CSS only for font information, making use of the
Family, Series, Shape, and Size specified in the Font declaration (see sec. 5.3.13).
The translation is mostly straightforward and obvious. For example, “Family Sans”
becomes “font-family: sans-serif;”. The correspondence of LYX sizes and CSS
sizes is a little less obvious but nonetheless intuitive. See the getSizeCSS() function
in src/FontInfo.cpp for the details.

5.5. Tags for DocBook output
As with LATEX or XHTML, the format of LYX’s DocBook output is also controlled
by layout information. In general, LYX provides sensible defaults; however, much of
the styling is lost during the conversion, as DocBook is strictly semantic and does

66

src/FontInfo.cpp

5.5. Tags for DocBook output

not allow formatting. When possible, information from LYX will be rendered in role
attributes.

In many cases, then, you may not have to do anything at all to get acceptable
DocBook output for your own environments, custom insets, and so forth. But in
some cases you will, and so LYX provides a number of layout tags that can be used
to customize the DocBook that is generated.

Labels are rarely output, as they are redundant in DocBook: this information is
carried by the tags themselves, and whether labels appear in the final documents (af-
ter processing of DocBook files) is controlled by the stylesheets. However, sometimes,
labels are not redundant content, such as definition lists: in this case, the term being
defined will be the label.

5.5.1. Paragraph styles
The sort of DocBook LYX outputs for a paragraph depends upon whether we are
dealing with a normal paragraph, a command, or an environment, where this is itself
determined by the contents of the corresponding LATEXType tag.

For a command or normal paragraph, the output DocBook has the following form:

<tag attr>
Contents of the paragraph.
</tag>

For an environment that is not some sort of list, the generated DocBook takes this
form:

<tag attr>
<itemtag>First paragraph.</itemtag>
<itemtag>Second paragraph.</itemtag>
</tag>

For a list, the resulting DocBook takes this form:

<tag attr>
<itemtag attr>First item.</itemtag>
<itemtag attr>Second item.</itemtag>
</tag>

The specific tags and roles output for each paragraph type can be controlled by means
of the layout tags we are about to describe. Please note that, due to the very nature
of DocBook, no sensible defaults really exist, and the values must always be carefully
chosen.

DocBookAttr [string] Specifies attribute information to be output with the main
tag, replacing “attr” in the example above. This information can be used in
further processing of the DocBook files.

67

5. Installing New Document Classes

DocBookTag [string] The tag to be used for this inset, replacing “tag” in the exam-
ple above. The default is the name of the float and always needs to be changed,
as DocBook provides no generic tag.

DocBookTagType [block, paragraph, inline] The new-line policy for this tag, see
Section sec. 5.5.2 for the details.

5.5.2. New-line policy
For all tags, there are three possible policies for outputting new lines (given in the
DocBook*TagType attribute):

• “block”: the opening and closing tags are on their own lines (i.e. a line feed
after and before the opening and the closing tags). Typical elements are floats.
For instance:

Content before
<blocktag>

Contents of the block.
</blocktag>
Content after

• “paragraph”: the opening and closing tags are on the same, new line; a line
feed is output before the opening tag and after the closing tag. Typical elements
are paragraphs and list items. For instance:

Content before
<paratag>Contents of the paragraph.</paratag>
Content after

• “inline”: the opening and closing tags are on the same line as the rest of the
content. No line feeds are output. Typical elements are fonts. For instance:

Content before<inlinetag>Contents of the paragraph.</inlinetag>Content after

The default value is always “block”.

5.5.3. InsetLayout DocBook
The DocBook output of insets can also be controlled by information in layout files.

The DocBook LYX outputs for an inset has the following form:

68

5.5. Tags for DocBook output

<wrappertag wrapperattr>
<tag attr>

<innertag innerattr>
Contents of the inset.

</innertag>
</tag>

</wrappertag>

For an itemising inset, it rather looks like this:

<wrappertag wrapperattr>
<tag attr>

<innertag innerattr>
<itemwrappertag itemwrapperattr>

<itemlabeltag itemattr>
Label of the first item.

</itemtag>
<itemtag itemattr>

<itemtag itemattr>
Contents of the first item.

</itemtag>
</itemtag>

</itemwrappertag>
<itemwrappertag itemwrapperattr>

<itemlabeltag itemattr>
Label of the second item.

</itemtag>
<itemtag itemattr>

<itemtag itemattr>
Contents of the second item.

</itemtag>
</itemtag>

</itemwrappertag>
...

</innertag>
</tag>

</wrappertag>

If the inset permits multiple paragraphs—that is, if MultiPar is true—then the
contents of the inset will themselves be output as paragraphs formatted according to
the styles used for those paragraphs (standard, quote, and the like). The inner tag
is optional and, by default, does not appear.

The specific tags and attributes output for each inset can be controlled by means
of the following layout tags.

69

5. Installing New Document Classes

DocBookAttr [string] Specifies attribute information to be output with the main
tag, replacing “attr” in the example above. This information can be used in
further processing of the DocBook files.

DocBookInInfo [never, always, maybe] Specifies whether this tag goes into the
<info> tag at the beginning of the parent layout. never indicates that the tag
never goes into <info> (this is default value, and corresponds to usual content).
always indicates that the tag always goes into <info> (this corresponds to usual
metadata): if there is no <info> tag for the parent, one will be generated.
maybe indicates that the tag may go into <info> (this is only the case for
titles): if there is no <info> tag for the parent, none will be generated, the
corresponding tag will be output directly as content.

DocBookItemAttr [string] Specifies attribute information to be output with the
item tag, replacing “itemattr” in the example above. This information can be
used in further processing of the DocBook files.

DocBookItemInnerAttr [string] Specifies attribute information to be output with
the item inner tag, replacing “iteminnerattr” in the example above. This
information can be used in further processing of the DocBook files.

DocBookItemInnerTag [string] The tag to be used for the item inner tag within the
inset, replacing “iteminnertag” in the example above. The default is NONE,
indicating that there is no item inner tag: content is directly output without
it for each itemised element. This parameter only makes sense when itemising
layouts are used, such as lists. The most likely value is “para”.
When a list item is split using a new line, the item inner tag will be repeated
for each part of the paragraph, parts being separated by new lines.

DocBookItemInnerTagType [block, paragraph, inline] The new-line policy for
this tag, see Section sec. 5.5.2 for the details.

DocBookItemLabelAttr [string] Specifies attribute information to be output with
the item label tag, replacing “itemlabelattr” in the example above. This
information can be used in further processing of the DocBook files.

DocBookItemLabelTag [string] The tag to be used for the item label tag within the
inset, replacing “itemlabeltag” in the example above. This parameter only
makes sense when itemising layouts are used with a notion of labels, such as
definition lists.

DocBookItemLabelTagType [block, paragraph, inline] The new-line policy for
this tag, see Section sec. 5.5.2 for the details.

DocBookItemTag [string] The tag to be used for the item tag within the inset,
replacing “itemtag” in the example above. The default is NONE, indicating

70

5.5. Tags for DocBook output

that there is no item tag. This parameter only makes sense when itemising
layouts are used, such as lists.

DocBookItemTagType [block, paragraph, inline] The new-line policy for this
tag, see Section sec. 5.5.2 for the details.

DocBookItemWrapperAttr [string] Specifies attribute information to be output
with the item wrapper tag, replacing “itemwrapperattr” in the example above.
This information can be used in further processing of the DocBook files.

DocBookItemWrapperTag [string] The tag to be used for the item wrapper tag
within the inset, replacing “itemwrappertag” in the example above. The de-
fault is NONE, indicating that there is no item wrapper tag: tag and content
are directly output without it for each itemised element. This parameter only
makes sense when itemising layouts are used, such as lists.

DocBookItemWrapperTagType [block, paragraph, inline] The new-line policy for
this tag, see Section sec. 5.5.2 for the details.

DocBookInnerAttr [string] Specifies attribute information to be output with the
inner tag, replacing “innerattr” in the example above. This information can
be used in further processing of the DocBook files.

DocBookInnerTag [string] The tag to be used for the inner tag within the inset,
replacing “innertag” in the example above. The default is NONE, indicating
that there is no inner tag: content is directly output without it.

DocBookInnerTagType [block, paragraph, inline] The new-line policy for this
tag, see Section sec. 5.5.2 for the details.

DocBookSectionTag [string] Specifies the tag that corresponds to this kind of sec-
tion. This parameter only makes sense for sectioning elements (part, chap-
ter, section, etc.). The default value is section, and is only overridden when
DocBook uses something else for sectioning (typically, parts and chapters of a
book).

DocBookTag [string] The tag to be used for this inset, replacing “tag” in the exam-
ple above. The default is the name of the float and always needs to be changed,
as DocBook provides no generic inset tag.

DocBookTagType [block, paragraph, inline] The new-line policy for this tag, see
Section sec. 5.5.2 for the details.

DocBookWrapperAttr [string] Specifies attribute information to be output with
the outer wrapper tag, replacing “wrapperattr” in the example above. This
information can be used in further processing of the DocBook files.

71

5. Installing New Document Classes

DocBookWrapperTag [string] The tag to be used for the wrapper tag around the
inset, replacing “wrappertag” in the example above. The default is NONE,
indicating that there is no wrapper tag: tag and content are directly output
without it.

DocBookWrapperTagType [block, paragraph, inline] The new-line policy for this
tag, see Section sec. 5.5.2 for the details.

5.5.4. Float DocBook
The DocBook output for floats too can be controlled by layout information. The
output has the following form:

<tag attr>
Contents of the float as DocBook.

</tag>

The caption, if there is one, is a separate inset and will be output as a title.

DocBookAttr [string] Specifies attribute information to be output with the main
tag, replacing “attr” in the example above. This information can be used in
further processing of the DocBook files.

DocBookTag [string] The tag to be used for this float, replacing “tag” in the example
above. The default is the name of the float and always needs to be changed, as
DocBook provides no generic float tag.

5.5.5. Bibliography formatting
Included bibliographies cannot be formatted: all fields are always output in the
database-like DocBook format (equivalent to a BibTeX file), using the biblioentry
tag.

When the bibliographic entries are manually inserted into the LYX document as
Bibliography Items, the user deals with formatting themself: there is no attempt of
parsing what the user wrote, the string is directly used (with the bibliomixed tag).

72

6. Including External Material

WARNING: This portion of the documentation has not been updated for some
time. We certainly hope that it is still accurate, but there are no guarantees.

The use of material from sources external to LYX is covered in detail in the Em-
bedded Objects manual. This part of the manual covers what needs to happen behind
the scenes for new sorts of material to be included.

6.1. How does it work?
The external material feature is based on the concept of a template. A template is a
specification of how LYX should interface with a certain kind of material. As bundled,
LYX comes with predefined templates for Xfig figures, various raster format images,
chess diagrams, and LilyPond music notation. You can check the actual list by using
the menu Insert ▷ File ▷ External Material. Furthermore, it is possible to roll
your own template to support a specific kind of material. Later we’ll describe in more
detail what is involved, and hopefully you will submit all the templates you create
so we can include them in a later LYX version.

Another basic idea of the external material feature is to distinguish between the
original file that serves as a base for final material and the produced file that is
included in your exported or printed document. For example, consider the case of
a figure produced with Xfig. The Xfig application itself works on an original file
with the .fig extension. Within Xfig, you create and change your figure, and when
you are done, you save the fig-file. When you want to include the figure in your
document, you invoke transfig in order to create a PostScript file that can readily
be included in your LATEX file. In this case, the .fig file is the original file, and the
PostScript file is the produced file.

This distinction is important in order to allow updating of the material while you
are in the process of writing the document. Furthermore, it provides us with the
flexibility that is needed to support multiple export formats. For instance, in the
case of a plain text file, it is not exactly an award-winning idea to include the figure
as raw PostScript. Instead, you would either prefer to just include a reference to the
figure or try to invoke some graphics to ASCII converter to make the final result look
similar to the real graphics. The external material management allows you to do this,
because it is parametrized on the different export formats that LYX supports.

Besides supporting the production of different products according to the exported
format, it supports tight integration with editing and viewing applications. In the

73

6. Including External Material

case of an Xfig figure, you are able to invoke Xfig on the original file with a single
click from within the external material dialog in LYX, and also preview the produced
PostScript file with Ghostview with another click. No more fiddling around with the
command line and/or file browsers to locate and manipulate the original or produced
files. In this way, you are finally able to take full advantage of the many different
applications that are relevant to use when you write your documents, and ultimately
be more productive.

6.2. The external template configuration files
It is relatively easy to add custom external template definitions to LYX. However, be
aware that doing this in an careless manner most probably will introduce an easily
exploitable security hole. So before you do this, please read the discussion about
security in sec. 6.4.

Having said that, we encourage you to submit any interesting templates that you
create.

The external templates are defined in the *.xtemplate files that are stored in
the LyXDir/lib/xtemplates/ directory. Each template is defined in a file of its
own. You can place your own templates in UserDir/xtemplates/ or copy existing
templates to that directory in order to modify them.

A typical template looks like this:

Template XFig
GuiName "XFig: $$AbsOrRelPathParent$$Basename"
HelpText
An XFig figure.
HelpTextEnd
InputFormat fig
FileFilter "*.fig"
AutomaticProduction true
Transform Rotate
Transform Resize
Format LaTeX
TransformCommand Rotate RotationLatexCommand
TransformCommand Resize ResizeLatexCommand
Product "$$RotateFront$$ResizeFront

\\input{$$AbsOrRelPathMaster$$Basename.pstex_t}
$$ResizeBack$$RotateBack"

UpdateFormat pstex
UpdateResult "$$AbsPath$$Basename.pstex_t"
Requirement "graphicx"
ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pstex_t"
ReferencedFile latex "$$AbsPath$$Basename.eps"

74

6.2. The external template configuration files

ReferencedFile dvi "$$AbsPath$$Basename.eps"
FormatEnd
Format PDFLaTeX
TransformCommand Rotate RotationLatexCommand
TransformCommand Resize ResizeLatexCommand
Product "$$RotateFront$$ResizeFront

\\input{$$AbsOrRelPathMaster$$Basename.pdftex_t}
$$ResizeBack$$RotateBack"

UpdateFormat pdftex
UpdateResult "$$AbsPath$$Basename.pdftex_t"
Requirement "graphicx"
ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pdftex_t"
ReferencedFile latex "$$AbsPath$$Basename.pdf"
FormatEnd
Format Ascii
Product "[XFig: $$FName]"
FormatEnd
Format DocBook
Product "<graphic fileref=\"$$AbsOrRelPathMaster$$Basename.eps\">

</graphic>"
UpdateFormat eps
UpdateResult "$$AbsPath$$Basename.eps"
ReferencedFile docbook "$$AbsPath$$Basename.eps"
ReferencedFile docbook-xml "$$AbsPath$$Basename.eps"
FormatEnd
TemplateEnd

As you can see, the template is enclosed in Template . . . TemplateEnd. It contains
a header specifying some general settings and, for each supported primary document
file format, a section Format . . . FormatEnd.

6.2.1. The template header
AutomaticProduction true|false Whether the file represented by the template

must be generated by LYX. This command must occur exactly once.

FileFilter <pattern> A glob pattern that is used in the file dialog to filter out
the desired files. If there is more than one possible file extension (e. g. tgif
has .obj and .tgo), use something like "*.{obj,tgo}". This command must
occur exactly once.

GuiName <guiname> The text that is displayed on the button. This command must
occur exactly once.

75

6. Including External Material

HelpText <text> HelpTextEnd The help text that is used in the External dialog.
Provide enough information to explain to the user just what the template can
provide him with. This command must occur exactly once.

InputFormat <format> The file format of the original file. This must be the name
of a format that is known to LYX (see sec. 3.1). Use “*” if the template can
handle original files of more than one format. LYX will attempt to interrogate
the file itself in order to deduce its format in this case. This command must
occur exactly once.

Template <id> A unique name for the template. It must not contain substitution
macros (see below).

Transform Rotate|Resize|Clip|Extra This command specifies which transfor-
mations are supported by this template. It may occur zero or more times.
This command enables the corresponding tabs in the external dialog. Each
Transform command must have either a corresponding TransformCommand or
a TransformOption command in the Format section. Otherwise the transfor-
mation will not be supported by that format.

6.2.2. The Format section
Format LaTeX|PDFLaTeX|PlainText|DocBook|XHTML The primary document file

format that this format definition is for. Not every template has a sensible
representation in all document file formats. Please define nevertheless a Format
section for all templates. Use a dummy text when no representation is available.
Then you can at least see a reference to the external material in the exported
document.

Option <name> <value> This command defines an additional macro $$<name> for
substitution in Product. <value> itself may contain substitution macros. The
advantage over using <value> directly in Product is that the substituted value
of $$<name> is sanitized so that it is a valid optional argument in the document
format. This command may occur zero or more times.

Product <text> The text that is inserted in the exported document. This is actually
the most important command and can be quite complex. This command must
occur exactly once.

Preamble <name> This command specifies a preamble snippet that will be included
in the LATEX preamble. It has to be defined using PreambleDef . . . PreambleDefEnd.
This command may occur zero or more times.

ReferencedFile <format> <filename> This command denotes files that are cre-
ated by the conversion process and are needed for a particular export format. If
the filename is relative, it is interpreted relative to the master document. This
command may be given zero or more times.

76

6.3. The substitution mechanism

Requirement <package> The name of a required LATEX package. The package is
included via \usepackage{} in the LATEX preamble. This command may occur
zero or more times.

TransformCommand Rotate RotationLatexCommand This command specifies that
the built in LATEX command should be used for rotation. This command may
occur once or not at all.

TransformCommand Resize ResizeLatexCommand This command specifies that the
built in LATEX command should be used for resizing. This command may occur
once or not at all.

TransformOption Rotate RotationLatexOption This command specifies that ro-
tation is done via an optional argument. This command may occur once or not
at all.

TransformOption Resize ResizeLatexOption This command specifies that resiz-
ing is done via an optional argument. This command may occur once or not at
all.

TransformOption Clip ClipLatexOption This command specifies that clipping is
done via an optional argument. This command may occur once or not at all.

TransformOption Extra ExtraLatexOption This command specifies that an ex-
tra optional argument is used. This command may occur once or not at all.

UpdateFormat <format> The file format of the converted file. This must be the
name of a format that is known to LYX (see the Tools ▷ Preferences ▷ File
Handling ▷ File Format dialog). This command must occur exactly once.
If the resulting file format is PDF, you need to specify the format pdf6. This
is the PDF format used for including graphics. The other defined PDF formats
are for document export.

UpdateResult <filename> The file name of the converted file. The file name must
be absolute. This command must occur exactly once.

6.2.3. Preamble definitions
The external template configuration file may contain additional preamble definitions
enclosed by PreambleDef . . . PreambleDefEnd. They can be used by the templates
in the Format section.

6.3. The substitution mechanism
When the external material facility invokes an external program, it is done on the
basis of a command defined in the template configuration file. These commands can

77

6. Including External Material

contain various macros that are expanded before execution. Execution always take
place in the directory of the containing document.

Also, whenever external material is to be displayed, the name will be produced by
the substitution mechanism, and most other commands in the template definition
support substitution as well.

The available macros are the following:

$$AbsOrRelPathMaster The file path, absolute or relative to the master LYX doc-
ument.

$$AbsOrRelPathParent The file path, absolute or relative to the LYX document.

$$AbsPath The absolute file path.

$$Basename The filename without path and without the extension.

$$Contents(“filename.ext”) This macro will expand to the contents of the file
with the name filename.ext.

$$Extension The file extension (including the dot).

$$pngOrjpg This will be the string “jpg” if the file is in JPEG format, otherwise
it will be the string “png”. This is useful to avoid uneeded conversions for
output formats that support both PNG and JPEG fomats. The predefined
RasterImage template uses this macro for the pdfTEX output format.

$$FName The filename of the file specified in the external material dialog. This is
either an absolute name, or it is relative to the LYX document.

$$FPath The path part of $$FName (absolute name or relative to the LYX document).

$$RelPathMaster The file path, relative to the master LYX document.

$$RelPathParent The file path, relative to the LYX document.

$$Sysdir This macro will expand to the absolute path of the system directory. This
is typically used to point to the various helper scripts that are bundled with
LYX.

$$Tempname A name and full path to a temporary file which will be automatically
deleted whenever the containing document is closed, or the external material
insertion deleted.

All path macros contain a trailing directory separator, so you can construct e. g. the
absolute filename with $$AbsPath$$Basename$$Extension.

The macros above are substituted in all commands unless otherwise noted. The
command Product supports additionally the following substitutions if they are en-
abled by the Transform and TransformCommand commands:

78

6.3. The substitution mechanism

$$ResizeFront The front part of the resize command.

$$ResizeBack The back part of the resize command.

$$RotateFront The front part of the rotation command.

$$RotateBack The back part of the rotation command.

The value string of the Option command supports additionally the following substi-
tutions if they are enabled by the Transform and TransformOption commands:

$$Clip The clip option.

$$Extra The extra option.

$$Resize The resize option.

$$Rotate The rotation option.

You may ask why there are so many path macros. There are mainly two reasons:

1. Relative and absolute file names should remain relative or absolute, respec-
tively. Users may have reasons to prefer either form. Relative names are useful
for portable documents that should work on different machines, for example.
Absolute names may be required by some programs.

2. LATEX treats relative file names differently than LYX and other programs in
nested included files. For LYX, a relative file name is always relative to the doc-
ument that contains the file name. For LATEX, it is always relative to the master
document. These two definitions are identical if you have only one document,
but differ if you have a master document that includes part documents. That
means that relative filenames must be transformed when presented to LATEX.
Fortunately LYX does this automatically for you if you choose the right macros.

So which path macro should be used in new template definitions? The rule is not
difficult:

• Use $$AbsPath if an absolute path is required.

• Use $$AbsOrRelPathMaster if the substituted string is some kind of LATEX
input.

• Else use $$AbsOrRelPathParent in order to preserve the user’s choice.

There are special cases where this rule does not work and e. g. relative names are
needed, but normally it will work just fine. One example for such a case is the
command ReferencedFile latex "$$AbsOrRelPathMaster$$Basename.pstex_t"
in the XFig template above: We can’t use the absolute name because the copier for
.pstex_t files needs the relative name in order to rewrite the file content.

79

6. Including External Material

6.4. Security discussion
The external material feature interfaces with a lot of external programs and does so
automatically, so we have to consider the security implications of this. In particular,
since you have the option of including your own filenames and/or parameter strings
and those are expanded into a command, it seems that it would be possible to create a
malicious document which executes arbitrary commands when a user views or prints
the document. This is something we definitely want to avoid.

However, since the external program commands are specified in the template con-
figuration file only, there are no security issues if LYX is properly configured with
safe templates only. This is so because the external programs are invoked with the
execvp-system call rather than the system system-call, so it’s not possible to execute
arbitrary commands from the filename or parameter section via the shell.

This also implies that you are restricted in what command strings you can use in
the external material templates. In particular, pipes and redirection are not readily
available. This has to be so if LYX should remain safe. If you want to use some of
the shell features, you should write a safe script to do this in a controlled manner,
and then invoke the script from the command string.

It is possible to design a template that interacts directly with the shell, but since
this would allow a malicious user to execute arbitrary commands by writing clever
filenames and/or parameters, we generally recommend that you only use safe scripts
that work with the execvp system call in a controlled manner. Of course, for use in
a controlled environment, it can be tempting to just fall back to use ordinary shell
scripts. If you do so, be aware that you will provide an easily exploitable security
hole in your system. Of course it stands to reason that such unsafe templates will
never be included in the standard LYX distribution, although we do encourage people
to submit new templates in the open source tradition. But LYX as shipped from the
official distribution channels will never have unsafe templates.

Including external material provides a lot of power, and you have to be careful not
to introduce security hazards with this power. A subtle error in a single line in an
innocent looking script can open the door to huge security problems. So if you do not
fully understand the issues, we recommend that you consult a knowledgeable security
professional or the LYX development team if you have any questions about whether
a given template is safe or not. And do this before you use it in an uncontrolled
environment.

80

A. List of supported LYX functions to
be used in layouts

accents booktabs feyn listings natbib rsphrase tfrupee wasysym
amsbsy calc fixltx2e longtable nomencl setspace tipa wrapfig
amscd CJK float lyxskak pdfpages shapepar tipx xargs
amsmath color framed makeidx pifont slashed tone xcolor
amssymb covington graphicx marvosym pmboxdraw soul txfonts xy
amstext csquotes hhline mathdesign polyglossia splitidx ulem yhmath
amsthm dvipost hyperref mathdots prettyref subfig undertilde
array endnotes ifsym mathrsfs pxfonts subscript units
ascii enumitem ifthen mhchem refstyle tcolorbox url
bbding esint jurabib multicol rotating textcomp varioref
bm fancybox latexsym multirow rotfloat textgreek verbatim

81

B. Names of available colors to be
used in layouts

The colors listed below are the standard colors and those that you can adjust in the
LYX preferences.

B.1. Color functions
The following are no real colors, but rather act on color definitions:

ignore The color is ignored

inherit The color is inherited

none No particular color – clear or default

B.2. Static colors
These are fixed colors that cannot be customized. Please do not use these colors in
layout definitions, since they will not work well with some color themes (such as dark
themes):

black

white

blue

brown

cyan

darkgray

gray

green

lightgray

lime

83

B. Names of available colors to be used in layouts

magenta

olive

orange

pink

purple

red

teal

violet

yellow

B.3. Dynamic colors
These are the colors allocated to specific elements in :

added_space Added space color

addedtext Added text color

appendix Appendix marker color

background Background color

bookmark Bookmark indicator color

bottomarea Bottom area color

branchlabel Label color for branches

buttonbg Color used for button background

buttonframe Color for inset button frames

buttonhoverbg Color used for button background under focus

buttonhoverbg_broken Color used for broken inset button under focus

changebar Changebar color

changedtextauthor1 Changed text color author 1

changedtextauthor2 Changed text color author 2

changedtextauthor3 Changed text color author 3

84

B.3. Dynamic colors

changedtextauthor4 Changed text color author 4

changedtextauthor5 Changed text color author 5

changedtextcomparison Changed text color document comparison (workarea)

collapsible Collapsible insets text color

collapsibleframe Collapsible insets framecolor

command Text color for command insets

commandbg Background color for command insets

commandframe Frame color for command insets

command_broken Text color for broken (reference) insets

commandbg_broken Background color for broken insets

commandframe_broken Frame color for broken insets

comment Label color for comments

commentbg Background color of comments

cursor Cursor color

deletedtext Deleted text color

deletedtextmodifier Deleted text modifying color (for adjusting the brightness)

depthbar Color for the depth bars in the margin

eolmarker End of line marker color

error Color of the LATEX error box

footlabel Label color for footnotes

foreground Foreground color

graphicsbg Graphics inset background color

greyedoutbg Background color of greyedout inset

greyedoutlabel Label color for greyedout insets

greyedouttext Color for greyedout inset text

indexlabel Label color for index insets

85

B. Names of available colors to be used in layouts

inlinecompletion Inline completion color

insetbg Inset marker background color

insetframe Inset marker frame color

language Color for marking foreign language words

latex Text color in LATEX mode

listingsbg Background color of listings inset

marginlabel Label color for margin notes

math Math inset text color

mathbg Math inset background color

mathcorners Math inset frame color not under focus

mathframe Math inset frame color under focus

mathline Math line color

mathmacrobg Macro math inset background color

mathmacroblend Macro math blended color

mathmacroframe Macro math frame color

mathmacrohoverbg Macro math inset background color hovered

mathmacrolabel Macro math label color

mathmacronewarg Macro template color for new parameters

mathmacrooldarg Macro template color for old parameters

newpage New page color

nonunique_inlinecompletion Inline completion color for the non-unique part

note Label color for notes

notebg Background color of notes

pagebreak Page break/line break color

paragraphmarker Color used for the pilcrow sign to mark the end of a paragraph

phantomtext Text color for phantom insets

86

B.3. Dynamic colors

preview The color used for previews

previewframe Preview frame color

regexpframe Color for regexp frame

scroll Color that indicates when a row can be scrolled

selection Background color of selected text

selectionmath Foreground color of selected text in math insets

selectiontext Foreground color of selected text

shadedbg Background color of shaded box

special Special chars text color

tabularline Table line color

tabularonoffline Table line color

textlabel1 Color 1 of layout and custom inset labels

textlabel2 Color 2 of layout and custom inset labels

textlabel3 Color 3 of layout and custom inset labels

urllabel Label color for URL insets

urltext Color for URL inset text

87

	Contents
	1 Introduction
	2 LyX configuration files
	2.1 What's in LyXDir?
	2.1.1 Automatically generated files
	2.1.2 Directories
	2.1.3 Files you don't want to modify
	2.1.4 Other files needing a line or two

	2.2 Your local configuration directory
	2.3 Running LyX with multiple configurations

	3 The Preferences dialog
	3.1 Formats
	3.2 Copiers
	3.3 Converters

	4 Internationalizing LyX
	4.1 Translating LyX
	4.1.1 Translating the graphical user interface (text messages).
	4.1.1.1 Ambiguous messages

	4.1.2 Translating the documentation.

	4.2 International Keymap Stuff
	4.2.1 The .kmap File
	4.2.2 The .cdef File
	4.2.3 Dead Keys
	4.2.4 Saving your Language Configuration

	5 Installing New Document Classes
	5.1 Installing new LaTeX files
	5.2 Types of layout files
	5.2.1 Layout modules
	5.2.1.1 Local Layout

	5.2.2 Layout for .sty files
	5.2.3 Layout for .cls files
	5.2.4 Creating templates
	5.2.5 Upgrading old layout files
	5.2.6 Cite engine files

	5.3 The layout file format
	5.3.1 The document class declaration and classification
	5.3.2 The Module declaration
	5.3.3 The CiteEngine file declaration
	5.3.4 Format number
	5.3.5 General text class parameters
	5.3.6 ClassOptions section
	5.3.7 Paragraph styles
	5.3.8 Internationalization of Paragraph Styles
	5.3.9 Floats
	5.3.10 Flex insets and InsetLayout
	5.3.11 Arguments
	5.3.12 Counters
	5.3.13 Font description
	5.3.14 Cite engine description
	5.3.15 Cite format description

	5.4 Tags for XHTML output
	5.4.1 Paragraph styles
	5.4.2 InsetLayout XHTML
	5.4.3 Float XHTML
	5.4.4 Bibliography formatting
	5.4.5 LyX-generated CSS

	5.5 Tags for DocBook output
	5.5.1 Paragraph styles
	5.5.2 New-line policy
	5.5.3 InsetLayout DocBook
	5.5.4 Float DocBook
	5.5.5 Bibliography formatting

	6 Including External Material
	6.1 How does it work?
	6.2 The external template configuration files
	6.2.1 The template header
	6.2.2 The Format section
	6.2.3 Preamble definitions

	6.3 The substitution mechanism
	6.4 Security discussion

	A List of supported LyX functions to be used in layouts
	B Names of available colors to be used in layouts
	B.1 Color functions
	B.2 Static colors
	B.3 Dynamic colors

