# LyX' detailliertes Mathe Handbuch

 ${\rm vom}\ {\rm L}_{\!Y}\!{\rm X}\text{-}{\rm Team}^*$ 

Version 2.4.x

13. Mai 2024

<sup>\*</sup>Für Anmerkungen oder Korrekturen senden sie bitte eine Email an LyX' Dokumentations-Liste: lyx-docs@lists.lyx.org

# Inhaltsverzeichnis

| 1. | Einleitung                                                                                            | 1                                      |
|----|-------------------------------------------------------------------------------------------------------|----------------------------------------|
| 2. | Allgemeine Hinweise                                                                                   | 1                                      |
| 3. | Grundlegende Funktionen           3.1. Exponenten und Indizes                                         | 44<br>44<br>66<br>67<br>77<br>78<br>89 |
| 4. | Matrizen                                                                                              | 10                                     |
| 5. | Klammern und Begrenzungszeichen  5.1. Vertikale Klammern und Begrenzungszeichen                       | 12<br>13<br>14<br>15                   |
| 6. | Pfeile6.1. Horizontale Pfeile6.2. Vertikale und diagonale Pfeile                                      | 16<br>17<br>18                         |
| 7. | Akzente7.1. Akzente für ein Zeichen¹7.2. Akzente für mehrere Zeichen                                  | 18<br>19<br>20                         |
| 8. | Leerraum8.1. Vordefinierter Leerraum8.2. Variabler Leerraum²8.3. Leerraum neben eingebetteten Formeln | 20<br>20<br>21<br>22                   |
| 9. | Boxen und Rahmen 9.1. Boxen mit Rahmen                                                                | 23<br>23<br>24<br>25                   |

<sup>&</sup>lt;sup>1</sup>Akzente im Text siehe Kap. 16.2

 $<sup>^2 \</sup>mathrm{für}$ vertikalen Leerraum in Formeln siehe Kap. 18.1.1

|                | 9.4.     | Absatzboxen                                                            |
|----------------|----------|------------------------------------------------------------------------|
| 10             | •        | Große Operatoren                                                       |
|                |          | 1                                                                      |
|                | 10.2.    | 1 0                                                                    |
|                |          | 1                                                                      |
|                |          | Binäre Operatoren                                                      |
| 11             | .Schri   | ften 34                                                                |
|                | 11.1.    | Schriftstile                                                           |
|                | 11.2.    | Fett gedruckte Formeln                                                 |
|                | 11.3.    | Farbige Formeln                                                        |
|                | 11.4.    | Schriftgrößen                                                          |
| 12             |          | hische Buchstaben 37                                                   |
|                |          | Kleine Buchstaben                                                      |
|                | 12.2.    | Große Buchstaben                                                       |
|                | 12.3.    | Fett gedruckte Buchstaben                                              |
| 13             | .Symb    |                                                                        |
|                | 13.1.    | Mathematische Symbole                                                  |
|                | 13.2.    | Sonstige Symbole                                                       |
|                | 13.3.    | Das Euro-Symbol $\in$                                                  |
| 14             | . Relat  | ionen 40                                                               |
| 15             |          | tionen 41                                                              |
|                | 15.1.    | Vordefinierte Funktionen                                               |
|                | 15.2.    | Selbst definierte Funktionen                                           |
|                | 15.3.    | Grenzwerte                                                             |
|                | 15.4.    | Modulo-Funktionen                                                      |
| 16             | .Sond    | erzeichen 44                                                           |
|                | 16.1.    | Sonderzeichen im mathematischen Text                                   |
|                | 16.2.    | Akzente im Text                                                        |
|                | 16.3.    | Minuskelziffern                                                        |
| 17             | . Form   | elstile 45                                                             |
| 18             | . Mehr   | zeilige Formeln 46                                                     |
|                | 18.1.    | Allgemeines                                                            |
|                |          | 18.1.1. Zeilenabstand                                                  |
| <sup>3</sup> F | Eine Lis | te mit sämtlichen Symbolen der meisten LATEX-Pakete findet man in [4]. |

|          | 18.1.2. Spaltenabstand                                   | 47 |
|----------|----------------------------------------------------------|----|
|          | 18.1.3. Lange Formeln                                    | 48 |
|          | 18.1.4. Mehrzeilige Brüche                               | 49 |
|          | 18.1.5. Mehrzeilige Klammern                             | 49 |
| 18.2.    | Align-Umgebungen                                         | 50 |
|          | 18.2.1. Standard align-Umgebung                          | 50 |
|          | 18.2.2. Alignat-Umgebung                                 | 51 |
|          | 18.2.3. Flalign-Umgebung                                 | 51 |
| 18.3.    | Eqnarray-Umgebung                                        | 51 |
| 18.4.    | 0.44-7-1-0.4-1-0.4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 52 |
| 18.5.    | 0 0                                                      | 52 |
| 18.6.    | 0                                                        | 53 |
| 18.7.    | Text in mehrzeiligen Formeln                             | 53 |
| 19. Form | nelnummerierung                                          | 54 |
| 19.1.    | 6                                                        | 54 |
| 19.2.    |                                                          | 54 |
| 19.3.    | Unternummerierung                                        | 55 |
| 19.4.    |                                                          | 56 |
| 19.5.    | Benutzerdefinierte Nummerierung                          | 57 |
| 20. Cher | nische Symbole und Reaktionsgleichungen                  | 59 |
| 21. Diag | ramme                                                    | 60 |
|          | amscd Diagramme                                          | 61 |
|          | xymatrix Diagramme                                       | 62 |
|          | FEYNMAN Diagramme                                        | 62 |
| 22.Benu  | utzerdefinierte Befehle                                  | 62 |
| 22.1.    | Der Befehl \newcommand                                   | 62 |
|          | Mathe-Makros                                             |    |
|          | Mathe-Makros für externe Befehle                         |    |
| 23. Com  | puteralgebrasysteme                                      | 66 |
| 23.1.    | Verwendung                                               | 67 |
| 23.2.    | Tastenkürzel                                             | 67 |
| 24. Vers | chiedenes                                                | 67 |
| 24.1.    | Negative Zahlen                                          | 67 |
| 24.2.    | Komma als Dezimaltrennzeichen                            | 68 |
| 24.3.    | Physikalische Vektoren                                   | 68 |
| 24.4.    | Selbst definierte Brüche                                 | 69 |
| 24.5.    | Durchgestrichene Formeln                                 | 70 |
| 24.6.    | Formeln in Überschriften                                 | 71 |
|          | 24 6 1 Überschrift ohne Formel im Inhaltsverzeichnis     | 71 |

|         |                                                                      | _              |
|---------|----------------------------------------------------------------------|----------------|
|         | 24.6.2. Überschrift mit Formel im Inhaltsverzeichnis $\sqrt{-1} = i$ | 7              |
| 24.7.   | Formeln im mehrspaltigen Text                                        | 7              |
| 24.8.   | Formeln mit Beschreibung der Variablen                               | 7              |
| 24.9.   | Aufrechte kleine griechische Buchstaben                              | 7              |
|         | O. Textzeichen in Formeln                                            | 7              |
|         |                                                                      | 7              |
|         | . I <sup>A</sup> TEX-Kommentare in Formeln                           |                |
|         | ographische Hinweise                                                 |                |
|         | ographische Hinweise                                                 | 7:<br>7:<br>7: |
| А. Турс | ographische Hinweise                                                 | 7              |

# 1. Einleitung

Dieses Dokument ist eine Zusammenstellung und Erläuterung der wichtigsten LaTeX-Befehle für mathematische Zeichen und Konstruktionen. Die Erläuterungen sind speziell auf die Benutzung der Befehle mit LyX zugeschnitten. Das setzt voraus, dass bereits das Kapitel Mathematische Formeln des Benutzerhandbuchs gelesen worden ist.

Die meisten Zeichen und viele Konstruktionen sind auch über das Menü Einfügen⊳ Mathe oder die Mathe-Werkzeugleiste aufrufbar. Wer viele Formeln zu schreiben hat, wird jedoch feststellen, dass man mit den L⁴TEX-Befehlen viel schneller eine Formel setzen kann. Daher wird in diesem Handbuch der Fokus auf Befehle gesetzt wobei entsprechende Werkzeugleistenknöpfe, falls vorhanden, erwähnt werden.

Sofern nicht anders angegeben, sind Befehle nur in der Formel-Umgebung von LγX verfügbar. Um alle Befehle nutzen zu können, muss die Option AMS-Mathe-Paket verwenden im Menü Dokument⊳ Einstellungen ⊳ Mathe Optionen aktiviert sein.<sup>4</sup>

Es wird in diesem Dokument der Übersichtlichkeit halber auf die Auflistung aller  $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -Mathe Befehle<sup>5</sup> verzichtet.

# 2. Allgemeine Hinweise

Um eine in einer Textzeile eingebettete Formel zu erstellen, verwendet man einen der Tastenkürzel oder den Werkzeugleistenknopf .

Um eine abgesetzte Formel (die größer ist, ein anderes Format hat und in einem eigenen Absatz erscheint) zu erstellen, verwendet man einen der Tastenkürzel .

Um eine abgesetzte Formel in eine eingebettete umzuwandeln, setzt man den Cursor in die Formel und drückt oder benutzt das Menü Bearbeiten > Mathe > Formelart ändern. Analog können Sie das Tastenkürzel verwenden, um eine eingebettete in eine abgesetzte Formel umzuwandeln.

Um Teile einer eingebetteten Formel in der Größe einer abgesetzten darzustellen, gibt man in die Formel den Befehl \displaystyle ein. Es erscheint ein neues blaues Kästchen, in das dann der Formelteil eingegeben wird.

In einer Tabelle dürfen nur eingebettete Formeln verwendet werden.

Die Sichtbarkeit der Mathe-Werkzeugleiste kann über das Menü Ansicht ⊳ Werkzeugleisten gesteuert werden. Es werden drei Optionen angeboten: An, Aus und Automatisch. Wenn dort auf An geklickt wird, wird die Werkzeugleiste permanent am unteren

 $<sup>^4</sup>$ Die Option AMS-Mathe-Paket automatisch verwenden verwendet  $\mathcal{A}_{\mathcal{M}}$ S-Mathe nur wenn im Dokument mathematische Konstrukte gefunden wurden die LyX unterstützt.

<sup>&</sup>lt;sup>5</sup>Eine Liste mit allen AMS-Mathe Befehlen findet sich in der Datei amsguide.pdf, die Teil jeder LATEX-Standardinstallation ist.

Rand eingeblendet; wenn auf Aus geklickt wird, wird sie nie gezeigt. Automatisch bewirkt, dass die Werkzeugleiste nur angezeigt wird, wenn sich der Cursor in einer Formel befindet. Die jeweilige Auswahl wird durch eine Markierung angezeigt.

In den TEX-Modus gelangt man über den Werkzeugleistenknopf oder das Menü Einfügen⊳TeX Code (Tastenkürzel Strg+L).

In den lagen ber das Menü Dokument beinstellungen ber LaTeX-Vorspann. Dokument beinstellungen ber LaTeX-Vorspann.

Zur nachträglichen Bearbeitung von Matrizen, Fallunterscheidungen und mehrzeiligen Formeln kann man die Menüs Bearbeiten ▷ Mathe und Bearbeiten ▷ Zeilen & Spalten oder die Tabellen-Werkzeugleiste verwenden. Beim Vertauschen von Zeilen und Spalten mit Hilfe dieses Menüs wird immer die Spalte bzw. Zeile, in der der Cursor steht, mit der rechts daneben stehenden Spalte bzw. darunter liegenden Zeile vertauscht. Befindet sich der Cursor in der letzten Spalte bzw. Zeile, wird mit der links daneben stehenden Spalte bzw. darüber liegenden Zeile vertauscht.

Zum Schreiben von Text in einer Formel<sup>6</sup> verwendet man den *mathematischen Text-modus*, in den man mit dem Tastenkürzel Alt+M M oder durch Eingabe des Befehls \text gelangt. Der Text erscheint in LyX schwarz und lässt sich dadurch gut vom Rest der Formel unterscheiden. Im fertigen Dokument erscheint mathematischer Text im Gegensatz zu allen anderen Zeichen einer Formel nicht kursiv.

### **Befehlsschema**

Die meisten LATEX-Befehle für mathematische Konstruktionen besitzen folgendes Schema:

### \Befehlsname[optionales Argument]{anzugebendes Argument}

Ein Befehl muss immer mit einem Backslash "\" beginnen. Möchte man ein optionales Argument nicht angeben, müssen auch die zugehörigen eckigen Klammern weggelassen werden. Die geschweiften Klammern werden in diesem Dokument als TeX-Klammern bezeichnet. Hängt man in einer Formel an Befehlsnamen eine linke geschweifte Klammer an, erzeugt LyX automatisch eine TeX-Klammer. Ansonsten werden sie in Formeln mit dem Befehl \{ erzeugt. TeX-Klammern erscheinen in LyX rot, im Gegensatz zu normalen geschweiften Klammern, die blau erscheinen. Im TeX-Modus sind für TeX-Klammern keine Befehle notwendig. TeX-Klammern erscheinen nicht im Ausdruck.

Werden Befehle ohne Argumente, wie z.B. Symbolbefehle, im TEX-Modus eingegeben, muss auf den Befehl *immer* ein Leerzeichen folgen um ihn zu beenden. Dieses Leerzeichen erscheint nicht im Ausdruck. Soll das Leerzeichen auch im Ausdruck erscheinen, muss auf den Befehl im normalen Text ein geschütztes Leerzeichen folgen.

Ein geschütztes Leerzeichen gibt man mit oder über ein.

<sup>&</sup>lt;sup>6</sup>Bei mehrzeiligen Formeln wird der Befehl \intertext verwendet, siehe Kap. 18.7.

### Zeichenerklärung

- Das Symbol $_{\sqcup}$ steht für ein von Benutzer\*innen einzugebendes Leerzeichen.
- Ein Pfeil wie z.B. → steht für den Druck der jeweiligen Pfeiltaste auf der Tastatur. Die Tabulator-Taste kann oft anstelle von → und ↓ benutzt werden und Umschalt+Tabulator anstelle von ← und ↑.

# Verfügbare Einheiten

Tabelle 1: Verfügbare Einheiten

| Einheit                | Name / Beschreibung                                 |  |
|------------------------|-----------------------------------------------------|--|
| mm                     | Millimeter                                          |  |
| $\mathrm{cm}$          | Zentimeter                                          |  |
| in                     | Inch / Zoll $(1 \text{ in} = 2.54 \text{ cm})$      |  |
| $\operatorname{pt}$    | Punkt (72,27 pt = 1 in)                             |  |
| pc                     | Pica (1 pc = 12 pt)                                 |  |
| $\operatorname{sp}$    | skalierter $Punkt(65536 sp = 1 pt)$                 |  |
| bp                     | großer Punkt $(72  \text{bp} = 1  \text{in})$       |  |
| $\mathrm{d}\mathrm{d}$ | Didot $(1 dd \approx 0.376 mm)$                     |  |
| cc                     | Cicero $(1 cc = 12 dd)$                             |  |
| ex                     | Höhe des Buchstabens $x$ in der aktuellen Schrift   |  |
| em                     | Breite des Buchstabens $M$ in der aktuellen Schrift |  |
| mu                     | Mathe-Einheit $(1 \mathrm{mu} = 1/18 \mathrm{em})$  |  |

# 3. Grundlegende Funktionen

### 3.1. Exponenten und Indizes

Indizes werden mit dem Unterstrich \_ oder mit dem Mathe-Werkzeugleistenknopf , Exponenten mit dem Zirkumflexzeichen ^ oder mit dem Mathe-Werkzeugleistenknopf erzeugt.

| Befehl | Ergebnis |
|--------|----------|
| B_V    | $B_V$    |
| B^V    | $B^V$    |
| Bˆ∟A   | $B^A$    |

Da der Zirkumflex ein Akzent ist, werden Selbstlaute akzentuiert statt hochgestellt<sup>7</sup>. Um in diesem Fall Exponenten zu erzeugen, muss nach dem Zirkumflex ein Leerzeichen eingegeben werden, siehe letztes Beispiel.

#### 3.2. Brüche

Brüche werden mit dem Befehl \frac oder mit dem Mathe-Werkzeugleistenknopf erstellt. Die Zeichengröße wird automatisch angepasst, je nachdem, ob sich der Bruch in einer eingebetteten oder abgesetzten Formel befindet. Mit dem Mathe-Werkzeugleistenknopf können verschieden Bruchtypen gewählt werden.

Mit dem Befehl \dfrac kann man einen Bruch erzeugen, der immer in der Größe einer abgesetzten Formel erscheint. Mit \tfrac erscheint der Bruch immer in der Größe einer eingebetteten Formel. Ein Beispiel:

Eine Zeile mit dem Bruch  $\frac{1}{2}$ , der mit dem Befehl \frac erstellt wurde.

Eine Zeile mit dem Bruch  $\frac{1}{2}$ , der mit dem Befehl \dfrac erstellt wurde.

| Befehl                                    | Ergebnis                    |
|-------------------------------------------|-----------------------------|
| $\frac_{\sqcup}A{\downarrow}B$            | $\frac{A}{B}$               |
| $\backslash dfrac_{\sqcup}A \downarrow B$ | $\frac{A}{B}$               |
| $\frac{\frac{1}{2}}{\sqrt{3}}$            | $\frac{e^{\frac{1}{2}}}{3}$ |

<sup>&</sup>lt;sup>7</sup>Je nach Tastatureinstellung werden auch andere Buchstaben akzentuiert.

Für Mehrfachbrüche gibt es den Befehl \cfrac. Dazu ein Beispiel:

mit \frac erstellt mit \cfrac erstellt 
$$\frac{A}{B + \frac{C + \frac{E}{F}}{D}}$$
 
$$B + \frac{C + \frac{E}{F}}{D}$$

Der Befehl für obiges Beispiel lautet:

$$\cfrac_A \downarrow B + \cfrac_C + \cfrac_E \downarrow F \downarrow D$$

**\cfrac** bewirkt, dass der Bruch immer in der Größe einer abgesetzten Formel erscheint, auch wenn er selbst Teil eines Bruches ist.

Es ist möglich die Ausrichtung des Zählers einzustellen. Der Befehl \cfracleft richtet ihn links, der Befehl \cfracright rechts aus. \cfrac zentriert den Zähler. Diese Brüche demonstrieren die verschiedenen Ausrichtungen:

$$\frac{A}{B+C}$$
,  $\frac{A}{B+C}$ ,  $\frac{A}{B+C}$ 

Achtung: \cfracleft und \cfracright sind keine echten LaTeX-Befehle, sondern stellen den Befehl \cfrac[Ausrichtung]{Zähler}{Nenner} dar. Daher kann man sie nicht im TeX-Code benutzen.

Oftmals ist es am günstigsten \cfrac und \frac zu kombinieren:

$$\frac{A}{B + \frac{C + \frac{E}{F}}{D}}$$

Um Brüche mit schrägem Bruchstrich zu erzeugen, kann der Befehl \nicefrac: 5/31 oder \unitfrac: 5/31 benutzt werden. Des Weiteren gibt es den Befehl \unitfracthree mit dem man einen Bruch in Kombination mit einer Zahl setzen kann: 2 1/3

Achtung: \unitfracthree ist kein echter LaTeX-Befehl, sondern der Befehl \unitfrac[Zahl]{Zähler}{Nenner}. Daher kann man ihn nicht im TeX-Code benutzen

Wie man eigene Brüche definiert, um die Bruchstrichdicke zu ändern, ist in Kap. 24.4 erklärt.

Mehrzeilige Brüche sind in Kap. 18.1.4 erklärt.

### 3.3. Wurzeln

Quadratwurzeln werden mit  $\$  oder dem Mathe-Werkzeugleistenknopf gesetzt, alle anderen Wurzeln mit dem Befehl  $\$  oder dem Mathe-Werkzeugleistenknopf

.

| Befehl      | Ergebnis        |
|-------------|-----------------|
| \sqrt⊔A-B   | $\sqrt{A-B}$    |
| \root⊔3↓A-B | $\sqrt[3]{A-B}$ |

Eine Quadratwurzel kann man auch mit **\root** erstellen, indem man das Feld über der Wurzel frei lässt.

Bei manchen Indizes ist der Abstand zur Wurzel zu gering, wie bei dieser Formel:  $\sqrt[\beta]{B}$ 

Das  $\beta$  berührt die Wurzel. Um dies zu verhindern, verwendet man die Befehle \left\left\troot und \left\left\left\upproot, die folgendes Schema besitzen:

### $\left\{ Abstand \right\}$ bzw. $\left\{ Abstand \right\}$

Abstand ist die Anzahl der Big Points (Einheit bp;  $72 \, \text{bp} = 1 \, \text{inch}$ ), um die der Index nach links bzw. nach oben verschoben werden soll. Die Befehle werden in den Index geschrieben. So ergibt der Befehl

#### 3.4. Binomialkoeffizienten

Binomialkoeffizienten können mit dem Befehl \binom oder über das Untermenü des Mathe-Werkzeugleistenknopfs eingefügt werden. Analog zu Brüchen (\frac) gibt es außer \binom noch die Befehle \dbinom und \tbinom. Für andere Klammern um Binomialkoeffizienten gibt es die Befehle \brace und \brack.

| Befehl                                      | Ergebnis                               |
|---------------------------------------------|----------------------------------------|
| \binom⊔A↓B                                  | $\begin{pmatrix} A \\ B \end{pmatrix}$ |
| $\d$ binom $_{\sqcup}A \downarrow B$        | $\begin{pmatrix} A \\ B \end{pmatrix}$ |
| $\t binom \_A {\downarrow} B$               | $\begin{pmatrix} A \\ B \end{pmatrix}$ |
| $\overline{\hspace{1em}}$ \brack_\A\daggerB | $\begin{bmatrix} A \\ B \end{bmatrix}$ |
| $\brace A \downarrow B$                     | ${A \brace B}$                         |

### 3.5. Fallunterscheidungen

| Befehl                           | Ergebnis                                                                   |
|----------------------------------|----------------------------------------------------------------------------|
| $\cspace \A{\rightarrow} B{>} 0$ | $\begin{cases} A & B > 0 \end{cases}$                                      |
| \cases_Strg+Enter                | $\begin{cases} A & \text{für } x > 0 \\ B & \text{für } x = 0 \end{cases}$ |
| /cases_surg   Enter              | $ \begin{cases} B & \text{für } x = 0 \end{cases} $                        |

Nach der Eingabe von **\cases** oder der Benutzung des Mathe-Werkzeugleistenknopfs können mit **Strg+Enter** oder dem Tabellen-Werkzeugleistenknopf neue Zeilen erstellt werden.<sup>8</sup>

Der Befehl \cases ist auch über das Menü Einfügen⊳Mathe⊳Cases-Umgebung verfügbar.

### 3.6. Verneinungen

Durch die Eingabe von \not kann jedes beliebige Zeichen durchgestrichen dargestellt werden. Die Zeichen werden quasi mit einem Schrägstrich akzentuiert.

| Befehl         | Ergebnis |
|----------------|----------|
| \not=          | <i>≠</i> |
| \not \le       |          |
| \not \parallel | <b>V</b> |

Das letzte Beispiel zeigt, dass nicht alle Verneinungen gut aussehen. Deswegen gibt es für Einige spezielle Befehle (siehe Kap. 13.1 und Kap. 14).

### 3.7. Platzhalter

Möchte man z.B. Isotope<sup>9</sup> darstellen, tritt folgendes Problem auf:

durch Hoch- und Tiefstellen erzeugte Indizes: 
$$^{19}_{9}$$
F korrekte Indizes:  $^{19}_{9}$ F

<sup>&</sup>lt;sup>8</sup>Umlaute in Formeln, wie in obiger Tabelle, sind in Kap. 7.1 beschrieben.

 $<sup>^9\</sup>mathrm{Wie}$ Isotope und chemische Reaktionen erstellt werden, ist in Kap. 20 beschrieben.

Der kürzere Index wird standardmäßig unter oder über das erste Zeichen des längeren Index gesetzt. Um das zu verhindern gibt es den Befehl \phantom oder den Mathe-Werkzeugleistenknopf 10, der ein oder mehrere Phantomzeichen erstellt. Wenn \phantom eingegeben wird, erscheint ein kleines blaues Kästchen, dass von zwei roten Pfeilen überlagert wird. Die Pfeile geben an, dass die komplette Breite und Höhe des Kästcheninhalts als Leerraum erstellt wird. Phantomzeichen sind dementsprechend Platzhalter mit der Größe der angegebenen Zeichen.

| Befehl                                                      | Ergebnis            |
|-------------------------------------------------------------|---------------------|
| $19_{\sqcup}\$ hantom $1\rightarrow 9_{\sqcup}\$ mathrm $F$ | ${}^{19}_{9}{ m F}$ |
| $^235$ \phantom_23 $\rightarrow$ 9_\mathrm_F                | $^{235}_{9}{ m F}$  |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                    | $\Lambda_{MMt}^{t}$ |

Des Weiteren gibt es noch die Befehle \vphantom (Werkzeugleistenknopf) und \hphantom (Werkzeugleistenknopf). \hphantom erzeugt nur Platz für die maximale Höhe der im Kästchen angegebenen Zeichen, nicht jedoch für deren Breite. Bei \vphantom wird nur Platz mit der Breite des Kästchens erstellt. Daher haben die Kästchen der beiden Befehle nur einen roten Pfeil.

Zum Beispiel erzeugt **\vphantom**⊔**a\int** Platz der Höhe des Integralzeichens,<sup>11</sup> da dieses das größere Zeichen ist. Eine Beispielanwendung ist in Kap. 18.1.5 zu finden.

Platzhalter können auch für Text verwendet werden, wenn sie über das Menü Einfügen⊳Formatierung⊳Phantom eingefügt werden:

Dies ist ein Satz. ist ein Satz.

### 3.8. Linien

| Befehl                                                      | Ergebnis         |
|-------------------------------------------------------------|------------------|
| \overline_A+B                                               | $\overline{A+B}$ |
| \underline∟A+B                                              | A + B            |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | $\overline{A+B}$ |

Beim letzten Beispiel spielt es keine Rolle, ob man zuerst  $\backslash$  overline oder  $\backslash$  underline eingibt.

<sup>&</sup>lt;sup>10</sup>zu finden im Untermenü des Mathe-Werkzeugleistenknopfs

<sup>&</sup>lt;sup>11</sup>Der Befehl \int erzeugt ein Integralzeichen, siehe Kap. 10.1.

Will man Ergebnisse mehrfach unterstreichen, verwendet man zweimal (oder so oft man braucht) hintereinander \underline.

Benutzerdefinierte Linien können mit dem Befehl **\rule** erstellt werden, der folgendes Schema besitzt:

### \rule[vertikaler Versatz]{Länge}{Dicke}

Der optionale vertikale Versatz verschiebt die Linie nach oben (oder nach unten, wenn der Wert negativ ist). Die Einheiten, die in Tabelle 1 aufgelistet sind, können für die Werte benutzt werden. Hier sind zwei Beispiele, die mit den Befehlen

 $\ | c|_{2ex}{3cm}{2pt} \$  und  $\ | c|_{2ex}{1pt} \$  erzeugt wurden:

| Dies ist ein Satz mit zwei Linien | Dies ist ein Satz mit zwei I | Linien |
|-----------------------------------|------------------------------|--------|
|-----------------------------------|------------------------------|--------|

**\rule** kann auch für Text verwendet werden, wenn eine Linie über das Menü Einfügen⊳ Formatierung⊳ Horizontale Line eingefügt wird:

Dies ist ein Satz — mit einer Linie.

### 3.9. Fortsetzungspunkte

Es gibt unterschiedliche Arten von Fortsetzungspunkten.<sup>12</sup> Für Aufzählungen verwendet man unten sitzende Punkte (\ldots), während man für Operationen Punkte braucht, die auf der selben Höhe wie die Operatoren sind (\cdots). Verwendet man den Befehl \dots, entscheidet IFTEX anhand des nachfolgenden Zeichens, welche Punktart verwendet wird.

| Befehl                                                          | Ergebnis                 |  |
|-----------------------------------------------------------------|--------------------------|--|
| $A\_1_\sqcup, \backslash dots_\sqcup, A\_n$                     | $A_1, \ldots, A_n$       |  |
| $A_1_++dots_++A_n$                                              | $A_1 + \cdots + A_n$     |  |
| $A\_1_{\sqcup}, \backslash ldots_{\sqcup}, A\_n$                | $A_1,\ldots,A_n$         |  |
| $A_1 + \cdot \cdot \cdot A_n$ $A_1 + \cdot \cdot \cdot + \cdot$ |                          |  |
| $\backslash { m vdots}$                                         | :                        |  |
| $\dot{ddots}$                                                   | ·                        |  |
| \iddots                                                         | ··                       |  |
|                                                                 | $A_{11}  \cdots  A_{1m}$ |  |
| $3\times3\mathrm{Matrix}$ mit obigen Befehlen                   | : ··. :                  |  |
|                                                                 | $A_{n1}  \cdots  A_{nm}$ |  |

<sup>&</sup>lt;sup>12</sup>In der Mathe-Werkzeugleiste zu finden im Untermenü des Knopfs

Die im Menü Einfügen⊳Sonderzeichen verfügbaren Fortsetzungspunkte sind \ldots.

Um \iddots nutzen zu können, muss eine der Optionen Mathdots Paket (automatisch) verwenden in den Dokumenteinstellungen unter Mathe-Optionen gewählt sein.

Die Option Mathdots Paket verwenden verbessert das Aussehen aller Fortsetzungspunkte des Dokuments wenn deren Schriftstil oder die Schriftgröße nicht Standard sind.

Speziell für Matrizen gibt es Fortsetzungspunkte, die sich über mehrere Spalten erstrecken. Man erhält sie mit dem Befehl **\hdotsfor**, der folgendes Schema besitzt (bitte beachten Sie, dass hierfür – in den Dokument-Einstellungen unter Mathe-Optionen – stets mathtools geladen werden muss):

### \hdotsfor[Abstand]{Anzahl der Spalten}

Anzahl der Spalten gibt an, über wie viele Spalten sich die Punkte erstrecken sollen. Abstand ist ein Faktor, der den Punktabstand festlegt.

In folgender Matrix wurde in das erste Kästchen der zweiten Zeile der Befehl \hdotsfor[2]{4} eingegeben, um Fortsetzungspunkte mit doppelt so großem Punktabstand wie beim Befehl \dots zu erhalten:

$$\left(\begin{array}{cccc}
A & B & C & D \\
\vdots & \vdots & \ddots & \vdots \\
q & w & e & r
\end{array}\right)$$

Es ist zu beachten, dass die Matrixfelder über die sich die Punkte erstrecken sollen leer sein müssen, ansonsten kommt es zu LATEX-Fehlern.

Des Weiteren kann man mit dem Befehl \dotfill den Rest einer Zeile mit Punkten füllen. Die Wirkungsweise des Befehls entspricht der von \hfill, siehe Kap. 8.2.

Um die Befehle für Text zu verwenden, müssen sie im TFX-Modus eingegeben werden.

### 4. Matrizen

Matrizen können über den Mathe-Werkzeugleistenknopf oder das Menü Einfügen⊳ Mathe⊳ Matrix eingefügt werden. Sie werden nach der Spalten- und Zeilenanzahl, der Ausrichtung und der Verzierung gefragt. Die vertikale Ausrichtung ist dabei nur bei Matrizen in eingebetteten Formeln von Bedeutung:

Die horizontale Ausrichtung gibt an, wie die Spalteneinträge ausgerichtet werden sollen. Dazu wird für jede Spalte ein Buchstabe eingegeben. l steht für linksbündig, c für mittig und r für rechtsbündig. Möchte man z. B. eine  $4\times 4$  Matrix erstellen, bei der der Inhalt der ersten Spalte linksbündig, der Inhalt der zweiten und dritten mittig und der Inhalt der letzten rechtsbündig ausgerichtet ist, gibt man für die horizontale Ausrichtung **lccr** an. Normalerweise sind in einer Matrix alle Spalteninhalte zentriert, weswegen die Voreinstellung für jede Spalte ein  ${\bf c}$  ist.

Horizontale Ausrichtung:

Um nachträglich Zeilen und Spalten hinzuzufügen oder zu entfernen, kann man die Mathe-Werkzeugleistenknöpfe , , usw. oder das Menü Bearbeiten⊳Zeilen & Spalten verwenden. Neue Zeilen können auch mit Strg+Enter erstellt werden.

Unter Erscheinungsbild finden Sie Möglichkeiten, um Klammern in einer bestimmten Form um die Matrix zu setzen. Außerdem können Sie den Stil small auswählen, der eine kleinere Matrix – wie diese:  $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$  – einfügt, die sich für den laufenden Text anbietet. Hier wurden die Klammern manuell hinzugefügt, mithilfe der Befehle **\bigl(** und **\bigr)**.

Alternativ können Klammern mit den Befehlen \left und \right erstellt werden (Tastenkürzel Alt+M Klammer), siehe Kap. 5.1.2, oder man verwendet folgende Befehle:

| Befehl                                                      | Ergebnis                                                       | Befehl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ergebnis                                                                     |
|-------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| \bmatrix_2 \times 2 Matrix                                  | $\left[\begin{array}{cc}0 & -i\\i & 0\end{array}\right]$       | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 -i   i 0                                                                   |
| $\Bmatrix_2 \times 2 Matrix$                                | $\left\{\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right\}$ | $\V \text{matrix}_{\square} 2 \times 2  \text{Matrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\left\ \begin{array}{cc}0 & -\mathrm{i}\\\mathrm{i} & 0\end{array}\right\ $ |
| $\operatorname{pmatrix}_{2} \times 2 \operatorname{Matrix}$ | $\left(\begin{array}{cc}0 & -i\\i & 0\end{array}\right)$       | $\text{\ }$ $\ $ | 0 -i<br>i 0                                                                  |

Wurde z. B. \vmatrix eingegeben, erscheint ein blaues Kästchen zwischen zwei senkrechten Strichen, in das die Matrix eingefügt wird.

Man beachte, dass verzierte Matrizen die vertikale Ausrichtung ignorieren.

Da alle mehrzeiligen Formeln Matrizen sind, kann man die in Kap. 18.1.2 beschriebene Länge **\arraycolsep** auch zur Änderung des Spaltenabstands von Matrizen verwenden.

Möchte man den Zeilenabstand ändern, verwendet man den Befehl \arraystretch. Dieser wird folgendermaßen benutzt:

### \renewcommand{\arraystretch}{Dehnungsfaktor}

Der Befehl \renewcommand weist dabei dem vordefinierten Befehl \arraystretch den Dehnungsfaktor zu. Möchte man z.B. den Zeilenabstand verdoppeln, gibt man für den Faktor eine 2 an. Dieser wird dann für alle folgenden Matrizen verwendet. Um wieder zum ursprünglichen Abstand zurückzukehren, weist man \arraystretch den Faktor 1 zu.

Um (kleinere) Matrizen in eine Textzeile zu setzen, benutzt man den Befehl \small-matrix. Gibt man ihn in eine Formel ein, erscheint ein blaues Kästchen mit zwei gestrichelten Linien. In dieses Kästchen wird die Matrix eingegeben. Man verwendet stattdessen das Menü Bearbeiten ▷ Zeilen & Spalten oder die Mathe-Werkzeugleiste um neue Spalten zu erstellen. Neue Zeilen können auch mit Strg+Enter erstellt werden.

Dies ist eine Matrix  $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$  in einer Textzeile.

### 5. Klammern und Begrenzungszeichen

### 5.1. Vertikale Klammern und Begrenzungszeichen

| Befehl  | Ergebnis | Befehl  | Ergebnis  |
|---------|----------|---------|-----------|
| (       | (        | )       | )         |
| {       | {        | }       | }         |
| [       |          | ]       | ]         |
| \langle | <        | \rangle | $\rangle$ |
| \lceil  | ſ        | \rceil  | ]         |
| \lfloor |          | \rfloor |           |
| /       | /        | \\      | \         |
|         |          | \       |           |

Achtung: Im TEX-Modus muss für den Backslash der Befehl \textbackslash verwendet werden, denn der Befehl \\ steht dort für einen Zeilenumbruch.

Für alle oben aufgelisteten Zeichen kann die Größe mit den in den folgenden zwei Unterkapiteln beschriebenen Befehlen eingestellt werden. Dabei können dann statt den Befehlen \langle und \rangle direkt die Zeichen < und > verwendet werden.

#### 5.1.1. Manuelle Klammergrößen

Möchte man die Klammergröße manuell festlegen, kann man dies mittels der I⁴TEX-Befehle \big, \Big, \bigg und \Bigg tun. \big steht hierbei für die kleinste und \Bigg für die größte Klammergröße.

Diese Befehle werden benutzt um Klammerebenen optisch hervorzuheben:

einheitliche Klammergröße: 
$$((A+B)(A-B))^C$$
  
besser sieht das so aus:  $((A+B)(A-B))^C$ 

Für die zweite Formel wurde der Befehl \Big((A+B)(A-B)\Big)^∟C verwendet. Hier alle Klammergrößen in der Übersicht:

$$\left(\exp\left\langle \left[\left\{\ln(3x)\right\}^2\sin(x)\right]^A\right\rangle\right)^{0.5}$$

Es gibt außer den  $\$ big-Befehlen noch die Variante  $\$ bigm, die etwas mehr Leerraum zwischen Klammer und Klammerinhalt erzeugt und die Variante  $\$ bigl- $\$ bigr, die keinen zusätzlichen Leerraum erzeugt. Das l am Ende des Befehls  $\$ bigl steht für eine linke Klammer; für eine rechte Klammer wird dieses durch ein r ersetzt. Eine linke oder rechte Klammer kann je eine öffnende oder schließende Klammer sein.

In der folgenden Tabelle sind die Varianten miteinander verglichen:

| Befehl                                                                                                     | Ergebnis                              |
|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $\Bigm(\bigm(\ln(3x)\bigm)^2_{\sqcup}\Bigm)$                                                               | $\left(\left(\ln(3x)\right)^2\right)$ |
| $\left\langle \left( $ | $\left(\left(\ln(3x)\right)^2\right)$ |
| $\left  \operatorname{Bigl}(\left  \ln(3x)\right  \right ^2 \cup \operatorname{Bigr})$                     | $\left(\left(\ln(3x)\right)^2\right)$ |
| $\left\langle \operatorname{bigl}\right\rangle \ln(3x)\left\langle \operatorname{bigr}\right\rangle$       | $\int \ln(3x) \Big($                  |

### 5.1.2. Automatische Klammergrößen

Klammern variabler Größe können mit den Befehlen \left und \right oder über den Mathe-Werkzeugleistenknopf eingefügt werden. Auf \left und \right muss unmittelbar die gewünschte Klammer folgen. Die Klammergröße wird dann bei der Ausgabe automatisch berechnet.

normale Klammer: Der Befehl  $\ln(\frac{1}{\ln(A\downarrow C_{\sqcup})})$  ergibt

$$\ln(\frac{A}{C})$$

mehrzeilige Klammer: Der Befehl  $\ln \left( \frac{1}{rac} A \downarrow C_{\perp} \right)$  ergibt

$$\ln\left(\frac{A}{C}\right)$$

An Stelle von \left und \right kann man die Tastenkürzel Alt+M Klammer verwenden. Das hat den Vorteil, dass man in LyX sofort die wahre Klammergröße sieht und dass die rechte Klammer gleich mit erstellt wird.

Der Befehl für das letzte Beispiel würde dann lauten:  $\ln Alt+M (\int a L) + M$ 

Will man nur eine Klammerhälfte erstellen, schreibt man für die weggelassene Klammer einen Punkt. So ergibt z. B. der Befehl  $\left\{ \mathbf{left.} \right\}$ :

$$\frac{A}{B}$$

Die Befehle \left und \right werden beim Neu laden des Dokuments von LyX in Klammern der richtigen Größe umgewandelt. Für eine weggelassene Klammer erscheint in LyX eine gestrichelte Linie.

Da alle gängigen LaTeX-Distributionen eTeX, eine Erweiterung von LaTeX, verwenden, steht für alle Klammern und Begrenzungszeichen zusätzlich der Befehl \middle zur Verfügung. Durch diesen wird das folgende Zeichen an die Höhe der umgebenden Klammern angepasst, was z. B. für physikalische Vektoren von Nutzen ist:

$$\left\langle \phi \mid J = \frac{3}{2}, M_J \right\rangle$$

Für physikalische Vektoren gibt es ein spezielles LATEX-Paket, das in Kap. 24.3 beschrieben ist.

### 5.2. Horizontale Klammern

| Befehl                                                                                      | Ergebnis                   |
|---------------------------------------------------------------------------------------------|----------------------------|
| $\sqrt{\text{overbrace}} A + B_{\square} 3$                                                 | $\overbrace{A+B}^3$        |
| $\label{eq:local_abs} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                               | $\underbrace{A+B}_{5}$     |
| $\label{eq:coverbrace} $$\operatorname{\verbrace}_{\square} A+B_w_{\square}_7_{\square}^C$$ | $\underbrace{A + B_w}^{C}$ |

Beim letzten Beispiel spielt es keine Rolle, ob man zuerst **\overbrace** oder **\underbrace** eingibt.

Wenn man in den Dokumenteinstellungen unter Mathe-Optionen für das Paket mathtools die Option Immer laden einstellt, hat man Zugriff auf eckige Klammern:

| Befehl                                                                   | Ergebnis        |
|--------------------------------------------------------------------------|-----------------|
| $\operatorname{\widetilde{A+B}_{\widehat{3}}}$                           | $\frac{3}{A+B}$ |
| lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:                                 | A + B $5$       |
| $\label{lem:condition} $\operatorname{\verbracket}_{A+B_w_u_u_7_u_^c}$$$ | $A + B_w$       |

Für **\overbracket** und **\underbracket** kann die Strichstärke der Klammer verändert werden, indem man die gewünschte Stärke in eckigen Klammern hinter dem Befehl angibt:

| Befehl                                                                    | Ergebnis  |
|---------------------------------------------------------------------------|-----------|
| $\operatorname{\sqrt{\operatorname{overbracket}[3pt]}}_{A+B_{\square}^3}$ | A + B     |
| lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:                                  | A + B $5$ |

Benötigt man Klammern, die sich überschneiden, muss man die in Kap. 18 beschriebenen mehrzeiligen Formeln verwenden:

$$A = \underbrace{gggg + bbqq}_{r} + dddd$$

In die erste Zeile wird die Formel zusammen mit der ersten Klammer eingegeben. Dabei ist es wichtig, dass vor dem ersten d der Abstandsbefehl<sup>13</sup> \: eingegeben wird, denn die nach dem q endende Klammer verhindert, dass das nachfolgende "+" von Leerraum umgeben ist.<sup>14</sup> In die zweite Zeile wird die zweite Klammer eingegeben. Da sie vor dem b beginnen soll, gibt man zuerst \hphantom{gggg+\:} ein.<sup>15</sup> Dieser Leerraum wird benötigt, weil das "+" in der Formel auch von Leerraum umgeben ist. Die Klammer wird unter den Befehl \hphantom{bbqq+dddd} gesetzt.

Komplizierter wird es, wenn sich Klammern über und unter der Formel überschneiden, wie in folgendem Beispiel:

$$A = \underbrace{gggg + \overbrace{bbqq}^{s} + dddd}_{r}$$

Die erste Formelzeile ist gleich der zweiten Zeile des vorigen Beispiels, mit dem Unterschied, dass sich die Klammer oben befindet. Die zweite Zeile enthält die Formel zusammen mit der zweiten Klammer. Damit sich zwischen oberer Klammer in der ersten Zeile und der Formel in der zweiten Zeile kein Leerraum befindet, muss der Zeilenabstand verändert werden. Aufgrund eines Fehlers in LyX ist dies nicht ohne Weiteres möglich. Es muss als Lösung des Problems der globale Formelzeilenabstand \jot vor der Formel mit dem Befehl \setlength{\jot}{-6pt} im TeX-Modus auf den Wert -6 pt geändert. Nach der Formel wird \jot mit demselben Befehl wieder auf den Standardwert 3 pt zurückgesetzt. Genaueres zum Zeilenabstand in Formeln ist in Kap. 18.1.1 erklärt.

### 6. Pfeile

Pfeile können über den Mathe-Werkzeugleistenknopf oder mit den Befehlen eingefügt werden, die in den folgenden Unterkapiteln aufgelistet sind.

 $<sup>\</sup>overline{\ }^{13}$ Abstandsbefehle sind in Kap. 8.1 erklärt.

<sup>&</sup>lt;sup>14</sup>weil eine Klammer nicht als Zeichen gilt, siehe Kap. 10.4

 $<sup>^{15}</sup>$ mehr zu **\hphantom** siehe Kap. 3.7.

 $<sup>^{16}</sup>$ LyX-Fehler #1505

### 6.1. Horizontale Pfeile

| Befehl                                                          | Ergebnis              | Befehl                                                     | Ergebnis          |
|-----------------------------------------------------------------|-----------------------|------------------------------------------------------------|-------------------|
| \gets                                                           | $\leftarrow$          | \to                                                        | $\rightarrow$     |
| \Leftarrow                                                      | $\Leftarrow$          | \Rightarrow                                                | $\Rightarrow$     |
| $\label{longleftarrow} \$                                       | $\leftarrow$          | $\label{longright} $\ \ \ \ \ $$ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\longrightarrow$ |
| \Longleftarrow                                                  | $\Leftarrow$          | \Longrightarrow                                            | $\Longrightarrow$ |
| \leftharpoonup                                                  |                       | \rightharpoonup                                            | $\rightarrow$     |
| \leftharpoondown                                                | $\overline{}$         | \rightharpoondown                                          | $\overline{}$     |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                        | $\leftarrow$          | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                   | $\hookrightarrow$ |
|                                                                 |                       |                                                            |                   |
| Befehl                                                          | Ergebnis              | Befehl                                                     | Ergebnis          |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                        | $\leftrightarrow$     | \mapsto                                                    | →                 |
| $\Leftrightarrow$                                               | $\Leftrightarrow$     |                                                            |                   |
| $\label{longleft} $$ \ordown{1}{\label{longleftrightarrow}} $$$ | $\longleftrightarrow$ | \longmapsto<br>\leadsto                                    | <b>→</b>          |
| \Longleftrightarrow                                             | $\longrightarrow$     | \leadsto<br>\dasharrow                                     | ,                 |
| $\$ rightleftharpoons                                           | $\rightleftharpoons$  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                     | >                 |

Als Akzente verwendete Pfeile, wie z.B. Vektorpfeile, sind in Kap. 7 aufgelistet.

Des Weiteren gibt es die beschriftbaren Pfeile \xleftarrow und \xrightarrow. Gibt man einen dieser Befehle in eine Formel ein, erscheint ein Pfeil mit zwei blauen Kästchen, in die man die Beschriftung eingeben kann. Die Pfeillänge passt sich der Breite der Beschriftung an.

| Befehl                                               | Ergebnis                                                   |
|------------------------------------------------------|------------------------------------------------------------|
| $F(a)\xleftarrow_x=a\downarrow x>0\rightarrow F(x)$  | $F(a) \stackrel{x=a}{\underset{x>0}{\longleftarrow}} F(x)$ |
| $F(x)\xrightarrow_x=a\downarrow x>0\rightarrow F(a)$ | $F(x) \xrightarrow[x>0]{x=a} F(a)$                         |

Wenn man in den Dokumenteinstellungen unter Mathe-Optionen für das Paket mathtools die Option Immer laden einstellt, hat man Zugriff auf die folgenden beschriftbaren Pfeile:

| Befehl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Example                                               | Befehl                           | Example            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|--------------------|
| \xleftrightarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\stackrel{x>0}{\underset{x=a}{\longleftrightarrow}}$ | \xleftharpoondown                | x>0 $x=a$          |
| \xLeftarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\stackrel{x>0}{\underset{x=a}{\overleftarrow{x}}}$   | $\$ $\$ $\$ $\$                  | x>0 $x=a$          |
| $\xspace$ xRightarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\xrightarrow{x>0}$                                   | \xrightharpoondown               | $\frac{x>0}{x=a'}$ |
| $\xspace \xspace \xsp$ | $\stackrel{x>0}{\underset{x=a}{\longleftrightarrow}}$ | $\xrightharpoonup$               | $\frac{x>0}{x=a}$  |
| \xhookleftarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\stackrel{x>0}{\underset{x=a}{\longleftarrow}}$      | $\verb \x  left right harpoons $ | $\frac{x>0}{x=a'}$ |
| \xhookrightarrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\xrightarrow[x=a]{x>0}$                              | $\verb \xrightleftharpoons  $    | x>0 $x=a$          |

Das Befehlsschema ist für all diese Pfeile dasselbe:

| Befehl                                                        | Ergebnis                                        |
|---------------------------------------------------------------|-------------------------------------------------|
| $\hline F(a) \setminus x = x = x = x = x = x = x = x = x = x$ | $F(a) \stackrel{x>0}{\longleftrightarrow} F(x)$ |

### 6.2. Vertikale und diagonale Pfeile

| Befehl         | Ergebnis       |          |            |
|----------------|----------------|----------|------------|
| \uparrow       |                | Befehl   | Ergebni    |
| \Uparrow       | 1              | \nearrow | 7          |
| \updownarrow   | $\updownarrow$ | \searrow | $\searrow$ |
| $\Updownarrow$ | $\updownarrow$ | \swarrow | ~          |
| $\Downarrow$   | $\downarrow$   | \nwarrow | _          |
| $\downarrow$   | $\downarrow$   | _        |            |

Vertikale Pfeile können auch als Begrenzungszeichen zusammen mit den in Kap. 5.1.1 und Kap. 5.1.2 beschriebenen Befehlen verwendet werden.

# 7. Akzente

Akzente können über den Mathe-Werkzeugleistenknopf oder mit den Befehlen eingefügt werden, die in den folgenden Unterkapiteln aufgelistet sind.

### 7.1. Akzente für ein Zeichen<sup>17</sup>

| Befehl                                                      | Ergebnis       |
|-------------------------------------------------------------|----------------|
| $\backslash {\rm dot} \Box {\rm A}$                         | $\dot{A}$      |
| $\backslash ddot \Box A$                                    | $\ddot{A}$     |
| $\backslash dddot \llcorner A$                              | $\ddot{A}$     |
| $\backslash ddddot \llcorner A$                             | $\ddot{A}$     |
| $\backslash {\rm vec} \sqcup A$                             | $ec{A}$        |
| $\backslash \mathrm{bar}_{\sqcup} \mathrm{A}$               | $ar{A}$        |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | $\mathring{A}$ |

| Befehl                         | Ergebnis    |
|--------------------------------|-------------|
| $\tilde{A}$                    | $	ilde{A}$  |
| $\backslash hat \llcorner A$   | $\hat{A}$   |
| $\backslash check \llcorner A$ | $\check{A}$ |
| $\backslash acute \llcorner A$ | $\acute{A}$ |
| $\backslash grave \llcorner A$ | $\grave{A}$ |
| $\breve A$                     | $reve{A}$   |

Akzente wie z.B. é können direkt in Formeln eingegeben werden. LyX transformiert sie dann in den entsprechenden Akzentbefehl. Für Umlaute ist es besser wenn man ein Anführungszeichen vor den Selbstlaut schreibt. Diese beiden Zeichen bilden dann für  $\LaTeX$  ein Zeichen. Im Gegensatz zu ddot entstehen damit "echte" Umlaute, was folgendes Beispiel zeigt:

| Befehl                        | Ergebnis        |
|-------------------------------|-----------------|
| "i                            | $\ddot{\imath}$ |
| $\backslash ddot \llcorner i$ | $\ddot{i}$      |

Ein weiterer Vorteil gegenüber \ddot ist, dass man Umlaute direkt in mathematischen Text konvertieren kann, denn die obigen Akzentbefehle sind im mathematischen Textmodus nicht erlaubt. Um ein akzentuiertes Zeichen in mathematischen Text zu überführen, darf nur das Zeichen unter dem Akzent umgewandelt werden. Das gilt auch für alle anderen Umwandlungen wie z.B. in kursiv oder fett.

Im mathematischen Textmodus können Umlaute und andere akzentuierten Zeichen direkt eingegeben werden.

LyX unterstützt auch eine Tilde unter einem Zeichen, wenn das LaTEX-Paket undertilde auf Ihrem System installiert ist:

Das IATEX-Paket **undertilde** muss installiert sein, um den Rest dieses Abschnitts im Ausdruck zu sehen.

 $<sup>^{17}\</sup>mathrm{Akzente}$ im Text siehe Kap. 16.2

### 7.2. Akzente für mehrere Zeichen

| Befehl                                                                       | Ergebnis                                 | Befehl                                                      | Ergebnis                                  |
|------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|-------------------------------------------|
| $\c \c \$                                   | $\overleftarrow{A} = B$                  | $\overrightarrow A = B$                                     | $\overrightarrow{A} = \overrightarrow{B}$ |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                  | A = B                                    | $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | A = B                                     |
| $\label{eq:constraint} $$\operatorname{\verteftrightarrow}_{\square} A = B$$ | $\overleftarrow{A} = \overrightarrow{B}$ | $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | $\widetilde{A} = B$                       |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                  | A = B                                    | $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ | $\widehat{A = B}$                         |

Mit diesen Befehlen können beliebig viele Zeichen akzentuiert werden. Die Akzente \widetilde und \widehat werden aber im Ausdruck nur mit einer Länge von etwa drei Zeichen gesetzt, was folgendes Beispiel verdeutlicht:

$$A + \widetilde{B = C} - D$$

Mit den im vorigen Kapitel beschriebenen Befehlen **\overset** und **\underset** ist es auch möglich mehrere Zeichen zu akzentuieren. Der Befehl **\underset**⊔**A**=**B**↓\*\*\* ergibt:

$$A = B$$

### 8. Leerraum

#### 8.1. Vordefinierter Leerraum

Ab und an ist es notwendig in einer Formel horizontalen Leerraum einzufügen. Dazu gibt man ein geschütztes Leerzeichen (Tastenkürzel ) ein. Es erscheint ein "u" und man kann durch mehrfaches Drücken der Leertaste aus acht verschiedenen Leerraum-Größen wählen. Man kann die Leerräume auch über den Mathe-Werkzeugleistenknopf oder mit einzelnen Befehlen aufrufen. Unabhängig vom eingegebenen Befehl kann man durch Drücken der Leertaste danach wieder aus allen Größen wählen.

|        |                                     |              | - |                 |                                     |      |       |
|--------|-------------------------------------|--------------|---|-----------------|-------------------------------------|------|-------|
| Befehl | Anzahl der<br>Leertasten-<br>drücke | Ergebnis     |   | Befehl          | Anzahl der<br>Leertasten-<br>drücke | Erge | ebnis |
|        | 0                                   | AB           |   | \hfill          | 5                                   | A    | B     |
| \:     | 1                                   | AB           |   | $\hspace*{1em}$ | 6                                   | A    | B     |
| \;     | 2                                   | A B          |   | $\hspace{1em}$  | 7                                   | A    | B     |
|        | 3                                   | A B          |   | \_              | 8                                   | A    | B     |
| \qquad | 4                                   | $A \qquad B$ |   | \!              | 9                                   | A    | B     |

Leerraum 5–7 sind variable Leerraume, die in Kap. 8.2 erläutert sind. Leerraum 9 scheint überhaupt keinen Leerraum zu produzieren. Er ist in LyX allerdings auch im Gegensatz zu allen anderen rot eingefärbt, denn er erstellt negativen Leerraum. Es gibt noch zwei weitere negative Leerraume:

| Befehl                                                                   | \negmedspace | \negthickspace |
|--------------------------------------------------------------------------|--------------|----------------|
| Anzahl der Leertastendrücke nach<br>Eingabe des geschützten Leerzeichens | 10           | 11             |
| Ergebnis                                                                 | AB           | AB             |

Negative Leerräume bewirken, dass sich benachbarte Zeichen überschneiden. Man kann auf diese Weise Ligaturen erzwingen, was z. B. für Summenzeichen von Nutzen ist:

| Befehl                                                   | Ergebnis           |
|----------------------------------------------------------|--------------------|
| \sum\sum <sub>□</sub> f_kl                               | $\sum \sum f_{kl}$ |
| $\label{lem:lemond} $\sum_{n} \sum_{j=1}^{n} f_{j} = 0.$ | $\sum \sum f_{kl}$ |

Relationen, wie z.B. Gleichheitszeichen, sind immer von Leerraum umgeben. Will man dies unterdrücken, schreibt man das Gleichheitszeichen in eine TEX-Klammer. Die Wirkung kann man an folgendem Beispiel gut erkennen:

normale Gleichung 
$$A = B$$
  
Gleichung ohne Leerraum  $A=B$ 

Der Befehl für die letzte Formel lautet:  $\mathbf{A} \backslash \{= \rightarrow \mathbf{B}$ 

Leerräumen werden für physikalische Einheiten benötigt, denn zwischen Wert und Einheit ist der kleinste Leerraum und kein normales Leerzeichen. Bei Einheiten im Text fügt man den kleinsten Leerraum über das Menü Einfügen⊳ Formatierung⊳ Kleiner Abstand (Tastenkürzel Strg+Shift+Leertaste) ein.

Ein Beispiel zur Veranschaulichung:

24 kW·h Leerzeichen zwischen Wert und Einheit

24 kW·h kleinster Leerraum zwischen Wert und Einheit

### 8.2. Variabler Leerraum<sup>18</sup>

Leerraum mit vorgegebener Länge lässt sich mit dem Befehl \hspace einfügen. Es erscheint ein langes "⊔". Die Länge kann eingestellt werden, indem man mit der

 $<sup>^{18} \</sup>mathrm{f\ddot{u}r}$ vertikalen Leerraum in Formeln siehe Kap. 18.1.1

linken Maustaste auf das "u" klickt. Die Länge darf auch negativ sein. Wenn ein Leerraum das erste Zeichen in einer Zeile ist, wird er automatisch weggelassen. Um seine Ausgabe zu erzwingen, verwendet man den Befehl \hspace\* statt \hspace oder klickt mit der linken Maustaste auf das "u" und wählt die Option Schützen aus. Um so viel Leerraum einzufügen, dass die Formel allen verfügbaren Platz einnimmt, benutzt man den Befehl \hfill.

| Befehl (\hspace Länge)                        |       | Ergebnis    |            |
|-----------------------------------------------|-------|-------------|------------|
| A=B\hspace <sub>□</sub> A\not=C (3 cm)        | A = B |             | $A \neq C$ |
| $A \rightarrow A \rightarrow A \rightarrow A$ |       | $AA \neq A$ |            |
| $A{=}A\backslash hfill_{\sqcup}B{=}B$         | A = A |             | B = B      |

Im letzten Beispiel ist der verfügbare Platz durch die Länge des längsten Spalteneintrags der Tabelle vorgegeben. In einer eingebetteten Formel ist der Platz von der Länge der Zeile abhängig, in die \hfill eingegeben wird. Füllt eine Zeile die Breite komplett aus, wird demnach kein Leerraum erstellt. \hfill wirkt in abgesetzten Formeln nur, wenn der Formelstil Eingerückt eingestellt ist. (Formelstile sind in Kap. 17 erklärt.)

Neben \hfill gibt es noch die Befehle \dotfill und \hrulefill, die den Leerraum mit einem Muster füllen, siehe Kap. 3.9 für ein Beispiel.

Variabler Leerraum kann für Text über das Menü Einfügen ⊳ Formatierung ⊳ Horizontaler Abstand eingefügt werden:

Dies ist eine Zeile mit 2 cm Leerraum.

Dies ist eine Zeile mit maximalem Leerraum.

# 8.3. Leerraum neben eingebetteten Formeln

Über die Länge \mathsurround lässt sich der Leerraum einstellen, der neben eingebettete Formeln gesetzt wird. Der Wert einer Länge wird mit dem Befehl \setlength gesetzt. Dieser besitzt folgendes Befehlsschema:

### \setlength{Längenname}{Wert}

Um \mathsurround den Wert 5 mm zuzuweisen, gibt man im TEX-Modus den Befehl

### $\left\{ \mathbf{5mm} \right\}$

ein. Neben alle eingebetteten Formeln, die auf den Befehl folgen, wird nun  $5\,\mathrm{mm}$  Leerraum gesetzt:

Dies ist eine Zeile in der sich A = B eine Formel mit 5 mm umgebendem Leerraum befindet.

Um wieder zum voreingestellten Wert zurückzukehren, setzt man  $\mbox{\bf mathsurround}$  auf den Wert  $0\,{\rm pt}.$ 

### 9. Boxen und Rahmen

Boxen für Text sind im Kapitel Boxen im Handbuch Eingebettete Objekte beschrieben.

#### 9.1. Boxen mit Rahmen

Es ist möglich Formeln oder Teile davon mit den Befehlen \fbox und \boxed zu umranden.

Gibt man einen dieser Befehle in eine Formel ein, erscheint ein Eingabefeld in einem Rahmen. Bei \fbox muss in diesem Eingabefeld mit Strg+M noch eine Formel erstellt werden, denn der Inhalt dieser Box wird sonst als mathematischer Text behandelt. Verwendet man \boxed, wird automatisch im Rahmen eine neue Formel erzeugt.

Der Befehl \fbox ist nicht zur Umrandung von abgesetzten Formeln geeignet, denn die Formel wird dann immer in Textzeilengröße gesetzt. Im Gegensatz dazu ist \boxed nicht zur Umrandung von Formeln in einer Textzeile geeignet, denn die Formel wird dann immer in der Größe einer abgesetzten Formel gesetzt.

Als Erweiterung zu **\fbox** gibt es den Befehl **\framebox**, bei dem man zusätzlich die Rahmenbreite und die Ausrichtung einstellen kann. **\framebox** wird nach folgendem Schema verwendet:

### \framebox[Rahmenbreite][Position]{Boxinhalt}

Die Position kann entweder l oder r sein. l bewirkt linksbündige, r rechtsbündige Ausrichtung der Formel in der Box. Gibt man keine Position an, wird die Formel zentriert.

Gibt man keine Breite an, darf auch keine Position angegeben werden. In diesem Falle wird die Rahmenbreite wie bei \fbox an den Boxinhalt angepasst.

Wenn man den Befehl \framebox eingibt, erscheint eine Box mit drei Eingabefeldern. Die ersten beiden sind von eckigen Klammern umgeben und stehen für die beiden optionalen Argumente. In das dritte Feld wird wie bei \fbox die Formel eingegeben.

| Befehl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ergebnis                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| $\footnote{-}$ $\foo$ | $\int A = B$             |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\int A = B$             |
| $A {+} \backslash fbox {\sqcup} B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A + \boxed{\mathbf{B}}$ |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{A}{B}$            |

Die Rahmendicke kann ebenfalls eingestellt werden. Dazu müssen vor der Formel im TEX-Modus die Befehle

### \fboxrule ,,Dicke" \fboxsep ,,Abstand"

eingegeben werden. "Abstand" legt dabei den minimalen Abstand zwischen Rahmen und dem ersten Zeichen in der Box fest. Ein Beispiel dafür ist folgende umrandete Formel:

$$A + B = C$$

Vor dieser Formel wurde im TFX-Modus

#### \fboxrule 2mm \fboxsep 3mm

eingegeben. Diese angegeben Werte werden für alle folgenden Boxen verwendet.

Möchte man wieder zur Standardrahmengröße zurückkehren, gibt man vor der nächsten Formel im TFX-Modus folgende Befehle ein:

\fboxrule 0.4pt \fboxsep 3pt

#### 9.2. Boxen ohne Rahmen

Für Boxen ohne Rahmen gibt es folgende Box-Befehle: \mbox, \makebox und \raisebox

Mit \raisebox kann man eine Box hoch- oder tiefstellen. Allerdings behalten die Zeichen in der Box im Gegensatz zum normalen Hochstellen die Schriftgröße bei. \raisebox wird dabei mit folgendem Schema benutzt:

#### \raisebox{Höhe}{Boxinhalt}

Soll in der Box eine Formel stehen, muss man wie bei \fbox eine weitere Formel erstellen. Achtung: Für \raisebox wird diese weitere Formel durch zweimaliges statt einmaliges Drücken von Strg+M erstellt, denn LyX unterstützt \raisebox noch nicht direkt.

| Befehl                                                              | Ergebnis                  |
|---------------------------------------------------------------------|---------------------------|
| $H\raisebox{2mm}\rightarrow \{al}\rightarrow lo$                    | $H^{\mathrm{al}}lo$       |
| $H\raisebox{-2mm} \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $H_{ m al}lo$             |
| $A = \ \ A = \ \ \ A = \ \ \ \ \ \ \ \ \ $                          | $A = \overline{\sqrt{B}}$ |

Der Befehl \mbox ist äquivalent zu \fbox und \makebox ist äquivalent zu \framebox, nur dass es keinen Rahmen gibt.

### 9.3. Farbige Boxen

Damit die in diesem Kapitel angegebenen Befehle benutzt werden können, muss im LATEX-Vorspann das LATEX-Paket color<sup>19</sup> mit der Zeile

### \usepackage{color}

geladen werden<sup>20</sup>.

Um Boxen einzufärben, verwendet man den Befehl \colorbox nach folgendem Sche-

### \colorbox{Farbe}{Boxinhalt}

Der Boxinhalt kann auch wieder eine Box sein und eine \colorbox kann auch ein Teil einer anderen Box sein (siehe 2. und 3. Beispiel). Soll in der Box eine Formel stehen, muss wie bei \raisebox eine weitere Formel erstellt werden.<sup>21</sup>

Aus folgenden vordefinierten Farben kann gewählt werden:

black, blue, cyan, green, magenta, red, white und yellow

\colorbox färbt nur die Box, nicht aber die Zeichen in der Box ein. Um alle Zeichen zu färben, markiert man die ganze Formel und wählt im Dialog Textstil die gewünschte Farbe aus. Der Dialog kann mit dem Werkzeugleistenknopf oder dem Menü Bearbeiten⊳ Textstil⊳ Benutzerdefiniert aufgerufen werden. Die Formelnummer hat dann dieselbe Farbe wie die Formel. Soll die Formelnummer eine andere Farbe als die Formelzeichen haben, muss innerhalb der Formel die Farbe geändert werden.

Ein Beispiel:

$$\int A = B \tag{1}$$

$$\int A = B \tag{2}$$

$$\int A = B \tag{2}$$

<sup>&</sup>lt;sup>19</sup>Das Paket **color** ist Teil jeder LAT<sub>F</sub>X-Standardinstallation.

<sup>&</sup>lt;sup>20</sup>Wird irgendwo im Dokument Text mit einer vordefinierten Farbe gefärbt, lädt LγX das L⁴TFX-Paket color automatisch. Dadurch kann es vorkommen, dass das Paket doppelt geladen wird, was aber keine Probleme hervorruft.

<sup>&</sup>lt;sup>21</sup>Das gilt auch für den Befehl \fcolorbox.

Formel (1) ist komplett rot gefärbt.

Formel (2) wurde zuerst komplett grün gefärbt, um die Farbe der Formelnummer festzulegen. Anschließend wurden die Formelzeichen rot gefärbt.

Möchte man den Rahmen anders als den Rest der Box färben, verwendet man den Befehl \folorbox nach folgendem Schema:

### \fcolorbox{Rahmenfarbe}{Farbe}{Boxinhalt}

\fcolorbox stellt also eine Erweiterung des Befehls \colorbox dar. Die Rahmenbreite wird, wie bei \framebox, mit \fboxrule und \fboxsep festgelegt. Ein Beispiel:



Diese Formel wurde mit folgendem Befehl erstellt:

 $\footnote{\colorbox{cyan} \rightarrow \footnote{\colorbox{cyan} \rightarrow$ 

Um andere als die vordefinierten Farben zu verwenden, muss man diese zuerst selbst definieren.

Man kann z.B. mit folgender LATEX-Vorspannzeile die Farbe "dunkelgruen"<sup>22</sup> definieren:

#### $\definecolor{dunkelgruen}{cmyk}{0.5, 0, 1, 0.5}$

cmyk ist der Farbraum und steht für die Farben cyan, magenta, yellow und black. Die vier Zahlen geben der Reihe nach den Anteil der vier Farben an. Für den Anteil kann man Werte im Bereich 0-1 angeben. Anstelle von cmyk kann man zur Definition auch den Farbraum rgb verwenden. rgb steht für red, green und blue, so dass man dann mit drei Zahlen die Anteile dieser Farben festlegen kann. Des Weiteren gibt es noch den Farbraum gray, bei dem man mit einer Zahl den Graustufenanteil festlegen kann.

Als Beispiel eine gerahmte Box mit der neu definierten Farbe **darkgreen**, bei der die Zeichenfarbe **yellow** gewählt wurde:

$$\int A \, \mathrm{d}x = \frac{\sqrt[5]{B}}{\ln\left(\frac{1}{3}\right)} \tag{3}$$

Selbst definierte Farben können mit dem Befehl \textcolor auch für Text verwendet werden:

Dieser Satz ist "dunkelgruen".

\textcolor wird nach dem Schema \textcolor{Farbe}{zu färbende Zeichen} verwendet.

<sup>&</sup>lt;sup>22</sup>In Befehlen darf kein Umlaut stehen, siehe Kap. 22.

### 9.4. Absatzboxen

Mit dem Menü Einfügen ⊳ Box oder dem Werkzeugleistenknopf kann man eine Box erstellen, die mehrere Zeilen und Absätze enthalten kann, eine so genannte *Parbox* (Absatzbox).

Das folgende Beispiel zeigt eine umrahmte Absatzbox in einer Zeile:

Dies ist eine Zeile Dies ist die Absatzbox. Sie ist genau 5 cm lang und kann auch Formeln enthalten:  $\int A \, \mathrm{d}s = C$  mit einer Absatzbox.

Solch eine Box wird erstellt, indem man mit der rechten Maustaste auf die graue Box mit dem Namen "Box(Gerahmt)" klickt. Es erscheint dann ein Fenster in dem man die Boxeigenschaften festlegt. In diesem Fall: Verzierung: Rechteckige Box, Innere Box: Parbox, Breite: 5 cm, Vertikale Box Ausrichtung: Mitte

In LATEX wird eine Absatzbox mit dem Befehl \parbox erstellt, welcher folgendes Schema besitzt:

### \parbox[Position]{Breite}{Boxinhalt}

Die Positionen b und t sind möglich. b steht für "bottom" (unten) und bedeutet, dass die letzte Absatzzeile in den umstehenden Text eingepasst wird. Bei t wie "top" (oben) geschieht dies für die erste Zeile. Wird keine Position angegeben, wird der Absatz in mittlerer Höhe eingepasst, siehe das Kapitel Boxen des Handbuchs Eingebettete Objekte für Beispiele.

Möchte man Formeln komplett mit Formelnummer umranden, muss man die Formel in eine Absatzbox setzen. Dazu schreibt man im TEX-Modus vor die Formel den Befehl \fbox{\parbox{\linewidth-2\fboxsep-2\fboxrule}{. Hierbei steht \linewidth für die im Dokument eingestellte Zeilenbreite. Da sich der Rahmen außerhalb der Absatzbox befindet, muss man von der Zeilenbreite zweimal die Rahmendicke und den Rahmenabstand abziehen. Damit man in Argumenten multiplizieren und subtrahieren kann, muss im LATEX-Vorspann das LATEX-Paket calc<sup>23</sup> mit der Zeile

#### \usepackage{calc}

geladen werden. Nach der Formel werden beide Boxen geschlossen, indem man }} im TEX-Modus eingibt. Dazu ein Beispiel:

<sup>&</sup>lt;sup>23</sup>calc ist Teil jeder LAT<sub>F</sub>X-Standardinstallation.

$$\int A \, \mathrm{d}x = \frac{\sqrt[5]{B}}{\ln\left(\frac{1}{3}\right)} \tag{4}$$

Da im Argument von \fbox eine Absatzbox verwendet wird, gibt es in diesem Fall bei der Formelgröße keinen Unterschied zwischen \fbox und \boxed.

Sehr nützlich sind Absatzboxen, wenn man Formeln direkt kommentieren möchte. Dazu verwendet man \parbox in Verbindung mit dem Befehl \tag. (mehr zu \tag siehe Kap. 19.5)

Ein Beispiel einer mit Hilfe von \parbox kommentierten Formel:

$$5x - 7b = 3b$$

Dies ist eine Beschreibung. Sie ist deutlich von der Formel getrennt und mehrzeilig.

So eine Formel muss komplett im TEX-Modus eingegeben werden, da LYX den Befehl \parbox in Formeln noch nicht unterstützt. Die Formel wird mit folgender Befehlssequenz erstellt:

Der Befehl  $[5x-7b=3b \times {5cm} { wird im T_EX-Modus eingegeben.}^{24}$  Dann folgt die Beschreibung als normaler Text und zuletzt gibt man  $}$  im T\_EX-Modus ein. Die Befehle [ und ] erstellen hierbei eine abgesetzte Formel.

Die Vorteile von **\parbox** erkennt man an folgendem Beispiel, in dem mit Hilfe des mathematischen Textmodus "kommentiert" wurde:

5x - 7b = 3bDies ist eine Beschreibung. Sie ist nicht von der Formel getrennt ...

# 10. Operatoren

### 10.1. Große Operatoren

Um alle großen Integraloperatoren nutzen zu können, die im Folgenden aufgelistet sind, muss die Option esint-Paket automatisch verwenden in den Dokumenteinstellungen unter Mathe-Optionen gewählt sein.

<sup>&</sup>lt;sup>24</sup>Ist der Formelstil **Eingerückt** aktiviert, kann \tag\*\{ auch durch \hfill ersetzt werden. (Formelstile siehe Kap. 17)

| Befehl                                   | Ergebnis | Befeh    | l Ergebnis   |
|------------------------------------------|----------|----------|--------------|
| \int                                     |          | \sum     | Σ            |
| $\setminus$ oint                         | ∮        | \proc    | lП           |
| \ointctrclockwise                        | ∳        | \copre   | od ∐         |
| \ointclockwise                           | ∮        | \bigod   | ot $\odot$   |
| $\setminus$ sqint                        | ∯        | \bigotin | $\infty$     |
| \fint                                    | f        | \bigop!  | lus $\oplus$ |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | f        | \bigwee  | dge ∧        |
| \landdownint                             | ∱        | \bigve   | ee V         |
| \bigcap                                  | $\cap$   | \bigsqc  | up 📙         |
| \bigcup                                  | U        | \bigup   | lus 🗡        |

Alle großen Operatoren können auch über den Mathe-Werkzeugleistenknopf eingefügt werden.

Die Operatoren werden als groß bezeichnet, da sie größer sind als die zum Teil gleich aussehenden binären Operatoren. Zu allen großen Operatoren kann man Grenzen angeben, wie im nächsten Abschnitt beschrieben.

Für alle Integrale gibt es Befehle, die auf **op** enden: \intop, \ointop usw.. Diese unterscheiden sich von \int usw. in der Art wie die Operatorgrenzen dargestellt werden, siehe Kap. 10.2.

### Hinweise zu Integralen

Der Buchstabe d in einer Integralen ist ein Operator, der deswegen aufrecht erscheinen muss. Dazu markiert man das d und wandelt es mit der Tastenkombination  $\mathsf{Alt+Z}\ \mathsf{R}^{25}$  um. Anschließend fügt man vor dem d, wie bei Operatoren üblich, den kleinsten Leerraum ein. Dazu ein Beispiel:

inkorrekt:  $\int A(x)dx$ korrekt:  $\int A(x) dx$ 

Für Mehrfachintegrale gibt es folgende Befehle:

| Befehl  | Ergebnis |
|---------|----------|
| \iint   | $\iint$  |
| \oiint  | $\oiint$ |
| \sqiint | $\oiint$ |

| Befehl     | Ergebnis           |
|------------|--------------------|
| \iiint     | $\iiint$           |
| \iiiint    | $\iiint$           |
| $\dotsint$ | $\int \cdots \int$ |

 $<sup>^{25}\</sup>mathrm{Schriftstile}$ siehe Kap. 11.1

### 10.2. Operatorgrenzen

Grenzen werden durch Hoch- bzw. Tiefstellen erzeugt:

| Befehl                                         | Ergebnis                         |
|------------------------------------------------|----------------------------------|
| $\prod^{infty} \rightarrow 0 \rightarrow A(x)$ | $\overline{\prod_0^\infty} A(x)$ |

Bei einer Formel in einer Textzeile werden die Grenzen rechts neben den Operator gesetzt. In einer abgesetzten Formel werden, außer bei Integralen, die Grenzen über bzw. unter den Operator gesetzt.

Um zu erzwingen, dass die Grenzen neben den Operator gesetzt werden, setzt man den Cursor direkt hinter den Operator und setzt über das Menü Bearbeiten⊳ Mathe⊳ Art der Operatorgrenzen ändern die Grenzen auf Eingebettet (Tastenkombination Alt+M L). Dazu folgendes Beispiel:

Die normalen Grenzen sehen so aus:

$$\sum_{x=0}^{\infty} \frac{1}{x^2}$$

So sieht die Formel aus, wenn man die Grenzen neben das Summenzeichen setzt:

$$\sum_{x=0}^{\infty} \frac{1}{x^2}$$

Bei Integralen werden mit Ausnahme von denen, die auf **op** enden (\intop, \ointop usw.), die Grenzen standardmäßig neben den Operator gesetzt. Bei Mehrfachintegralen werden die Grenzen jedoch meistens unter den Operator gesetzt. Im folgenden Beispiel wurde die Grenze deswegen auf **Anzeige** gesetzt und damit unter die Integrale geschrieben:

$$\iiint\limits_{V} X \, \mathrm{d}V = U \tag{5}$$

Um Bedingungen für Grenzen anzugeben, gibt es die Befehle \subarray und \substack. Um z.B. diesen Ausdruck

$$\sum_{\substack{0 < k < 1000 \\ k \in \mathbb{N}}}^{n} k^{-2} \tag{6}$$

zu erstellen, muss man Folgendes tun:

Zuerst gibt man den Befehl \sum^n\_\_ ein. Man befindet sich nun in einem blauen Kästchen unter dem Summenzeichen. In dieses gibt man den Befehl \subarray\_ ein. Das blaue Kästchen hat nun eine lila Umrandung und man kann jetzt mehrere Zeilen untereinander schreiben. Mit Eingabe des Zeilenumbruchs (Strg+Enter) wird

eine neue Zeile erstellt. Gibt man

#### 0 < k < 1000 Strg+Enter

ein, erscheint darunter ein Kästchen für die neue Zeile.

Die Ausrichtung der Zeilen kann mit der Tabellen-Werkzeugleiste oder dem Menü Bearbeiten⊳Zeilen & Spalten auf links geändert werden. Um rechts ausgerichtete Zeilen zu erhalten, wird am Anfang der Zeile \hfill eingegeben.

Der Befehl \substack ist \aguivalent zu \subarray, mit dem Unterschied dass die Zeilen immer zentriert ausgerichtet sind.

Wie bei Formel (6) kann es vorkommen, dass sich neben dem Operator zu viel Leerraum befindet, denn das dem Operator folgende Zeichen wird neben die Grenzen gesetzt. Um das zu verhindern, kann man den Befehl \smashoperator verwenden. Um ihn zu aktivieren, stellt man in den Dokumenteinstellungen unter Mathe-Optionen für das Paket mathtools die Option Immer laden ein. \smashoperator setzt den Leerraum um den Operator auf 0 pt.

Auf Formel (6) angewandt, verwendet man den Befehl

#### \smashoperator{

und fügt den Operator mit seinen Grenze in die geschweifte Klammer ein. Nach der geschweiften Klammer setzt man die Formel fort:

$$\sum_{0 < k < 1000}^{n} k^{-2}$$

$$k \in \mathbb{N}$$

Es ist möglich den Leerraum auf nur einer Seite des Operators auf 0 pt zu setzen. Dazu schreibt man entweder  $[\mathbf{l}]$  oder  $[\mathbf{r}]$  zwischen  $\scalebox{}$  smashoperator und seine geschweifte Klammer.  $\mathbf{l}$  steht dabei für die linke und  $\mathbf{r}$  für die rechten Seite des Operators. Hier ist ein Beispiel der möglichen Formen von  $\scalebox{}$  smashoperator:

$$Y \sum_{1 \le i \le j \le n}^{n=3456} X_{ij} = Y \sum_{1 \le i \le j \le n}^{n=3456} X_{ij} = Y \sum_{1 \le i \le j \le n}^{n=3456} X_{ij}$$

Wenn mehrere aufeinanderfolgende Operatoren Grenzen haben, sieht der Schriftsatz der Grenzen oft nicht ansprechend aus, wie dieses Beispiel zeigt:

$$\text{a)} \lim_{n \to \infty} \max_{p \geq n} \quad \text{b)} \lim_{n \to \infty} \max_{p^2 \geq n} \quad \text{c)} \lim_{n \to \infty} \sup_{p^2 \geq nK} \quad \text{d)} \lim\sup_{n \to \infty} \max_{p \geq n}$$

Um den Schriftsatz zu verbessern, stellt man in den Dokumenteinstellungen unter Mathe-Optionen für das Paket **mathtools** die Option Immer laden ein. Nun fügt man direkt vor den ersten Operator denn Befehl \adjustlimits ein. Das Beispiel schaut dann so aus:

a) 
$$\lim_{n\to\infty} \max_{p\geq n}$$
 b)  $\lim_{n\to\infty} \max_{p^2\geq n}$  c)  $\lim_{n\to\infty} \sup_{p^2\geq nK}$  d)  $\lim_{n\to\infty} \max_{p\geq n}$ 

In Kap. 10.5 ist beschrieben, wie man eine Grenze für mehrere Operatoren verwenden kann.

# 10.3. Dekoration für Operatoren

Zum Dekorieren von Operatoren gibt es die Befehle **\overset** und **\underset**, mit denen man Zeichen über bzw. unter einen Operator setzen kann. Mit dem Befehl **\sideset** können Zeichen vor und nach einen großen Operator gesetzt werden.

Es gibt 4 Varianten von \sideset:

- \sideset zum Setzen von Zeichen an die Ecken des Operators
- \sidesetn zum Setzen von Zeichen vor und/oder nach den Operator (diese Variante entspricht LATFXs originalem \sideset Befehl)
- \sidesetl zum Setzen von Zeichen an die linken Ecken und/oder nach den Operator
- \sidesetr zum Setzen von Zeichen an die rechten Ecken und/oder vor den Operator
- Z. B. ergibt der Befehl  $\sidesetn_{\sqcup}\sidesetn_{\sqcup}\rightarrow'\rightarrow\_k=1_{\sqcup}\n$ :

$$\sum_{k=1}^{n}'$$

Achtung: \sideset kann nur für die Dekoration von großen Operatoren verwendet werden, binäre Operatoren sind nicht erlaubt.

Mit **\overset** bzw. **\underset** kann man auch Symbole und Zeichen dekorieren. Beispielsweise ergibt der Befehl **\overset**∟\**maltese**∟↑**a** :



# 10.4. Binäre Operatoren

Binäre Operatoren sind von Leerraum umgeben, wenn sich vor und hinter ihnen ein Zeichen befindet.

| Befehl                     | Ergebnis   | Befehl                    | Ergebnis    | Befehl           | Ergebnis         |
|----------------------------|------------|---------------------------|-------------|------------------|------------------|
| +                          | +          | \nabla                    | $\nabla$    | \oplus           | $\oplus$         |
| -                          | _          | \bigtriangledown          | $\nabla$    | \ominus          | $\ominus$        |
| $\operatorname{pm}$        | $\pm$      | \bigtriangleup            | $\triangle$ | \otimes          | $\otimes$        |
| $\mbox{\ensuremath{mp}}$   | Ŧ          | $\backslash \mathrm{Box}$ |             | \oslash          | $\oslash$        |
| $\backslash \mathrm{cdot}$ |            | \cap                      | $\cap$      | $\setminus odot$ | $\odot$          |
| $\forall times$            | ×          | $\c$                      | $\cup$      | \amalg           | П                |
| \div                       | ÷          | \dagger                   | †           | \uplus           | $\forall$        |
| *                          | *          | $\d$                      | ‡           | \setminus        | \                |
| $\backslash star$          | *          | $\backslash \mathrm{wr}$  | }           | \sqcap           | П                |
| $\backslash \mathrm{circ}$ | 0          | \bigcirc                  | $\bigcirc$  | \sqcup           |                  |
| \diamond                   | $\Diamond$ | \wedge                    | $\wedge$    | $\$ triangleleft | ◁                |
| \bullet                    | •          | \vee                      | V           | \triangleright   | $\triangleright$ |

Alle binären Operatoren können auch über den Mathe-Werkzeugleistenknopf eingefügt werden.

Um den Laplace-Operator darzustellen, kann man statt **\bigtriangleup** auch **\Delta** verwenden oder man benutzt **\nabla^2** ( $\nabla^2$ ).

Das Zeichen Menütrenner im Menü Einfügen⊳Sonderzeichen ist der Operator \triangleright.

# 10.5. Selbst definierte Operatoren

Mit Hilfe des Befehls **\DeclareMathOperator** kann man im LaTeX-Vorspann eigene Operatoren definieren. Das Befehlsschema dazu lautet:

# \DeclareMathOperator{neuer Befehl}{Anzeige}

Anzeige können Zeichen und Symbole sein, die festlegen, wie der Operator im Ausdruck aussieht. Will man einen großen Operator definieren, setzt man hinter den Befehl ein \*. Zu allen selbst definierten großen Operatoren kann man Grenzen angeben, wie in Kap. 10.2 beschrieben.

Beispielsweise definiert die LATEX-Vorspannzeile

# 

den Befehl \Raute, mit dem man einen großen Operator aufrufen kann, der aus dem Raute Symbol aus Kap. 13.2 besteht:



Der Befehl für diese Formel lautet:  $\Raute^{\inf y} = 1$ 

Benötigt man eigene Operatoren nicht mehrfach im Dokument, kann man diese auch mit den Befehlen \mathop und \mathbin definieren, die folgendes Schema besitzen:

\mathop{Anzeige} bzw. \mathbin{Anzeige}

\mathop definiert große, \mathbin binäre Operatoren.

**\mathop** lässt sich z. B. nutzen, um eine Grenze für mehrere Operatoren zu verwenden:

$$\sum_{i,j=1}^{N}$$

Der Befehl für obige Formel lautet:  $\mbox{\mbox{$\mbox{mathop}{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$$ 

# 11. Schriften

#### 11.1. Schriftstile

Lateinische Buchstaben in einer Formel können in folgenden Schriftstilen gesetzt werden:

| Befehl                                                                 | Ergebnis        | Tastenkürzel         |
|------------------------------------------------------------------------|-----------------|----------------------|
| $\mbox{\mbox{$\backslash$}} ABC$                                       | $\mathbb{ABC}$  | -                    |
| $\mbox{\bf AbC}$                                                       | $\mathbf{AbC}$  | $Strg {+} Alt {+} B$ |
| $\begin{tabular}{l} $$ \boldsymbol $\sqcup$ AbC \\ \end{tabular}$      | AbC             | Strg + B             |
| $\mbox{\mbox{}{\bf Cl}\_ABC}$                                          | $\mathcal{ABC}$ | -                    |
| $\mbox{\mbox{$\backslash$}}$ mathfrak $\mbox{\mbox{$\backslash$}}$ AbC | AbC             | -                    |

| Befehl                                                                                   | Ergebnis | Tastenkürzel     |
|------------------------------------------------------------------------------------------|----------|------------------|
| \mathit⊔AbC                                                                              | AbC      | -                |
| $\mathrm{AbC}$                                                                           | AbC      | $Alt + Z \; R$   |
| $\mbox{mathsf}_{\square}\mbox{AbC}$                                                      | AbC      | $Alt + Z \; S$   |
| $\mbox{\mbox{$\backslash$}} \mbox{\mbox{$\Lambda$}} \mbox{\mbox{$h$}} \mbox{\mbox{$C$}}$ | AbC      | Strg + Shift + P |
| $\mbox{mathscr} \ ABC$                                                                   | ABC      | -                |

Achtung: Die Stile \mathbb, \mathcal und \mathscr können nur für Großbuchstaben verwendet werden.

Voreingestellt ist der Stil \mathnormal.

Die Stilbefehle wirken auch auf Buchstaben in mathematischen Konstruktionen:

$$\mathfrak{A}=rac{\mathfrak{b}}{\mathfrak{C}}$$

Zeichen im mathematischen Textmodus erscheinen nicht in einem der Matheschriftstile, sondern in dem Textschriftstil \textrm. Dass deren Stil nicht über den Textstil Dialog geändert werden kann ist ein Fehler in LyX.<sup>26</sup>

Anstelle der Stilbefehle kann man auch den Dialog Bearbeiten⊳Mathe⊳ Text-Stil oder den Mathe-Werkzeugleistenknopf verwenden.

#### 11.2. Fett gedruckte Formeln

Möchte man komplette Formeln fett setzen, kann man nicht den im vorigen Kapitel angegebenen Befehl **\mathbf** verwenden, denn dieser wirkt nicht auf kleine griechische Buchstaben. Außerdem setzt er lateinische Buchstaben immer aufrecht, was man an folgender Formel gut erkennt:

$$\int_{n}^{2} \mathbf{f}(\theta) = \mathbf{\Gamma} \qquad \text{Formel mit } \setminus \text{mathbf}$$

Um die Formel korrekt darzustellen, verwendet man den Befehl \boldsymbol:

$$\int_{n}^{2} f(\theta) = \Gamma$$
 Formel mit \boldsymbol

Es gibt auch die Möglichkeit die Formel in eine **boldmath-Umgebung** zu setzen. Diese Umgebung wird erzeugt, indem man im TEX-Modus den Befehl \**boldmath** eingibt. Um die Umgebung wieder zu beenden, gibt man im TEX-Modus den Befehl \**unboldmath** ein.

$$\int_{n}^{2} f(\theta) = \Gamma$$
 Formel in boldmath-Umgebung

# 11.3. Farbige Formeln

Formeln können wie normaler Text gefärbt werden: Markieren Sie eine Formel oder Formelteile und verwenden dann den Textstil Dialog. Hier ist eine Formel in Magenta:

$$\int A \, \mathrm{d}x = \frac{\sqrt[5]{B}}{\ln\left(\frac{1}{3}\right)}$$

 $<sup>^{26}</sup>$ LyX-Fehler #4629

Man kann auch eigene Farben definieren, wie in Kap. 9.3 erklärt ist. Diese können dann mit dem TEX-Code Befehl \textcolor verwendet werden, dass folgendes Schema besitzt:

#### \textcolor{Farbe}{Zeichen oder Formel}

Das folgende Beispiel wurde komplett dunkelgrün und teilweise rot eingefärbt:

$$\int A \, \mathrm{d}x = \frac{\sqrt[5]{B}}{\ln\left(\frac{1}{3}\right)}$$

Aufgrund eines Fehlers in LyX können nur komplette Formeln mit selbst definierten Farben gefärbt werden. $^{27}$ 

# 11.4. Schriftgrößen

Für Zeichen in einer Formel gibt es, analog zu Textzeichen, folgende Größenbefehle:

 $\label{large} $$ \Huge, \Large, \large, \normalsize, \small, \footnotesize, \scriptsize und \tiny $$$ 

Welche Größe die Befehle produzieren, hängt von der Dokumentschriftgröße ab, die dem Befehl \normalsize entspricht. Die anderen Befehle produzieren kleinere oder größere Schriften als \normalsize. Die Schriftgröße kann jedoch einen bestimmten Wert nicht übertreffen. Beträgt z. B. die Dokumentschriftgröße 12 pt, produziert der Befehl \Huge dasselbe wie \huge.

Ein Größenbefehl wird im TEX-Modus vor der Formel eingegeben und legt die Größe aller nachfolgenden Formel- und Textzeichen fest. Um wieder zur Ausgangsgröße zurückzukehren, gibt man nach der Formel im TEX-Modus den Befehl \normalsize ein.

Innerhalb einer Formel kann die Größe mit den folgenden Größenbefehlen oder dem Mathe-Werkzeugleistenknopf geändert werden:

| Befehl             | Ergebnis                                         |
|--------------------|--------------------------------------------------|
| \displaystyle      | $E_{\text{pot}_1} = \frac{K}{l + \frac{m}{n_2}}$ |
| \textstyle         | $E_{\text{pot}_1} = \frac{K}{l + \frac{m}{n_2}}$ |
| \scriptstyle       | $E_{\text{pot}_1} = \frac{K}{l + \frac{m}{n_2}}$ |
| \scriptscriptstyle | $E_{\text{pot}_1} = \frac{K}{l + \frac{m}{n_2}}$ |

<sup>&</sup>lt;sup>27</sup>LyX-bug #5269

Nachdem diese Befehle eingegeben wurden, erscheint eine blaues Kästchen in das die Formelteile eingegeben werden.

Es gibt eine weitere Möglichkeit die Schriftgröße zu ändern, die allerdings nur für Symbole oder Buchstaben im mathematischen Text funktioniert. Dazu wird einer der obigen Textgrößenbefehle im mathematischen Textmodus eingegeben. Alle diesem Befehl folgenden Zeichen bis zum Ende des mathematischen Textes oder bis zu einem anderen Größenbefehl haben dann die angegebene Größe. Dazu zwei Beispiele:

$$A = \frac{B}{c} \cdot \maltese$$

Vor beiden Formeln wurde der Befehl \huge eingegeben. Der Befehl für die zweite Formel lautet:

Kann ein Symbol nicht in verschiedenen Größen dargestellt werden, wird es immer in der Standardgröße dargestellt.

# 12. Griechische Buchstaben

Griechischen Buchstaben können auch über den Mathe-Werkzeugleistenknopf eingefügt werden. Alle internationalen Schriftsatz-Normen geben vor, dass griechische Buchstaben in Formeln aufrecht gesetzt werden. In einigen Sprachen, wie z. B: Französisch oder Russisch, werden sie dennoch manchmal aufrecht gesetzt.

#### 12.1. Kleine Buchstaben

| D - f - l - l |                         | Befehl    | Ergebnis    | D -f - l - l |                               |
|---------------|-------------------------|-----------|-------------|--------------|-------------------------------|
| Befehl        | Ergebnis                |           |             | Befehl       | Ergebnis                      |
| \alpha        | $\alpha$                | \iota     | $\iota$     | \varrho      | $\varrho$                     |
| \beta         | В                       | \kappa    | $\kappa$    | \sigma       | $\sigma$                      |
| ,             | ρ                       | \varkappa | $\varkappa$ | . , ,        | O                             |
| \gamma        | $\gamma$                | \lambda   | $\lambda$   | \varsigma    | ς                             |
| \delta        | $\delta$                | ,         |             | \tau         | au                            |
| \epsilon      | $\epsilon$              | \mu       | $\mu$       | \upsilon     | v                             |
| \varepsilon   | arepsilon               | \nu       | $\nu$       | \phi         | $\phi$                        |
| \zeta         | ζ                       | \xi       | ξ           | \varphi      | $\varphi$                     |
| \eta          | $\overset{\circ}{\eta}$ | 0         | 0           | \chi         | $\overset{r}{\chi}$           |
| \theta        | $\theta$                | \pi       | $\pi$       | \psi         | $\overset{\mathcal{X}}{\psi}$ |
| <b>A</b>      | Ü                       | \varpi    | $\varpi$    | , ,-         | ,                             |
| \vartheta     | heta                    | \rho      | ho          | omega        | $\omega$                      |

Wie man spezielle, aufrechte griechische Buchstaben erstellt, ist in Kap. 24.9 beschrieben.

#### 12.2. Große Buchstaben

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Befehl     | Ergebnis  | Befehl         | Erge   |
|-------------------------------------------------------|------------|-----------|----------------|--------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | `          | Γ         |                | Σ      |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$ | •          | $\Delta$  | , -            | Υ      |
| \X1 \(\frac{\text{T}}{\text{Omega}}\)                 | ,          | $\Lambda$ | `              | Φ      |
|                                                       | ∖Xi<br>\Pi | Ξ         | \Psi<br>\Omega | $\Psi$ |

Dass die großen griechischen Buchstaben aufrecht erscheinen, ist einem Fehler geschuldet, der während der Entwicklung von  $T_{EX}$  gemacht wurde. Um korrekte kursive Großbuchstaben zu erhalten, beginnt man einen Befehl mit var. So ergibt z.B. der Befehl  $\$ varGamma  $\Gamma$ . Eine andere Methode ist das Laden des Pakets  $fixmath^{28}$  mit der  $\$ FT-X-Vorspannzeile

#### \usepackage{fixmath}

Dann werden alle großen griechischen Buchstaben im Dokument automatisch kursiv ausgegeben.

<sup>&</sup>lt;sup>28</sup>fixmath ist Teil des LAT<sub>E</sub>X-Paketes was.

# 12.3. Fett gedruckte Buchstaben

Griechische lassen sich nicht wie lateinische Buchstaben in verschiedenen Schriftstilen darstellen. Es besteht nur die Möglichkeit, sie mit dem Befehl **\boldsymbol** fett gedruckt auszugeben.

| Ergebnis                 |
|--------------------------|
| Υ <b>Υ</b><br>θ <b>θ</b> |
|                          |

# 13. Symbole<sup>29</sup>

Viele der im Folgenden aufgelisteten Symbole können auch über die Mathe-Werkzeugleistenknöpfe und eingefügt werden.

# 13.1. Mathematische Symbole

| Befehl                                   | Symbol     | Befehl                                     | Symbol    | Befehl                                        | Symbol      |
|------------------------------------------|------------|--------------------------------------------|-----------|-----------------------------------------------|-------------|
| \neg                                     | _          | \forall                                    | $\forall$ | \prime                                        | ,           |
| $\backslash \mathrm{Im}$                 | $\Im$      | $\$                                        | $\exists$ | \backprime                                    | 1           |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\Re$      | $\n$                                       | ∄         | $\mbox{\ensuremath{\mbox{$\backslash$}}}$ mho | Ω           |
| \aleph                                   | ×          | $\ensuremath{\setminus} \mathrm{emptyset}$ | Ø         | \triangle                                     | $\triangle$ |
| \partial                                 | $\partial$ | \varnothing                                | Ø         | \angle                                        | _           |
| $\inf $                                  | $\infty$   | $\backslash dag$                           | †         | \measuredangle                                | 4           |
| $\protect\operatorname{wp}$              | 60         | $\backslash ddag$                          | ‡         | \spherical angle                              | ⋖           |
| $\subset$                                | $\imath$   | $\complement$                              | C         | $\setminus top$                               | T           |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\jmath$   | \Bbbk                                      | k         | \bot                                          | $\perp$     |

<sup>&</sup>lt;sup>29</sup>Eine Liste mit sämtlichen Symbolen der meisten LAT<sub>E</sub>X-Pakete findet man in [4].

# 13.2. Sonstige Symbole

| Befehl     | Symbol       | Befehl            | Symbol   | Befehl       | Symbol     |
|------------|--------------|-------------------|----------|--------------|------------|
| \flat      | þ            | \hbar             | $\hbar$  | \diamondsuit | $\Diamond$ |
| $\n$       | 4            | \hslash           | $\hbar$  | \Diamond     | $\Diamond$ |
| \sharp     | #            | \clubsuit         | *        | \heartsuit   | $\Diamond$ |
| \surd      | $\sqrt{}$    | $\$ spadesuit     | <b>•</b> | \P           | $\P$       |
| \checkmark | $\checkmark$ | \bigstar          | *        | $\copyright$ | ©          |
| \yen       | ¥            | \blacklozenge     | <b>♦</b> | \circledR    | R          |
| \pounds    | $\pounds$    | \blacktriangle    | <b>A</b> | maltese      | *          |
| \$         | \$           | \blacktiangledown | ▼        | \diagup      | /          |
| §          | 8            | \bullet           | •        | \diagdown    | \          |

Einige Symbole können in unterschiedlicher Größe dargestellt werden, siehe Kap. 11.4.

# 13.3. Das Euro-Symbol €

Wenn man in einer Formel das Euro-Symbol verwenden will, muss man das LATEX-Paket **eurosym** installieren und dieses mit der LATEX-Vorspannzeile

#### \usepackage[gennarrow]{eurosym}

aktivieren. Das Euro-Symbol kann man nun mit dem Befehl \euro aufrufen.

Das Euro-Symbol kann man direkt über die Tastatur in mathematischen Text eingeben, ohne **eurosym** installiert zu haben. Ist **eurosym** installiert, kann man **\euro** auch im TeX-Modus eingeben. Das offizielle Währungssymbol erhält man dann über den Befehl **\officialeuro**, der nur im TeX-Modus verfügbar ist.

Eine Übersicht der verschiedenen Euro-Symbole:

|                     | Befehl                   | Symbol |
|---------------------|--------------------------|--------|
| Formel              | \euro                    | €      |
| mathematischer Text | €                        | €      |
| $T_EX$ -Modus       | $\olimits$ \officialeuro | €      |

# 14. Relationen

Alle folgenden Relationen können auch über den Mathe-Werkzeugleistenknopf eingefügt werden.

| Befehl                  | Relation        | · | Befehl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Relation  | Befehl            | Relation                  |
|-------------------------|-----------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|---------------------------|
| <                       | <               |   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =         | >                 | >                         |
| \le                     | $\leq$          |   | $\not=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\neq$    | \ge               | $\geq$                    |
| \11                     | «               |   | \equiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≡         | \gg               | >>                        |
| \prec                   | $\prec$         |   | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sim$    | \succ             | $\succ$                   |
| \preceq                 | $\preceq$       |   | $\searrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\simeq$  | $\slash$ succeq   | $\succeq$                 |
| $\sl_{\mathrm{subset}}$ | $\subset$       |   | $\alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\approx$ | \supset           | $\supset$                 |
| $\sl_{\text{subseteq}}$ | $\subseteq$     |   | $\setminus$ cong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\cong$   | $\supseteq$       | $\supseteq$               |
| \sqsubseteq             |                 |   | \bowtie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\bowtie$ | \sqsupseteq       | $\supseteq$               |
| $\setminus \text{in}$   | $\in$           |   | $\setminus \mathrm{notin}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∉         | \ni               | $\ni$                     |
| $\vee dash$             | ⊢               |   | \perp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\perp$   | $\dshv$           | $\dashv$                  |
| $\$ smile               | $\smile$        |   | $\propto$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\propto$ | \frown            | $\frown$                  |
| \lhd                    | $\triangleleft$ |   | \asymp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\asymp$  | $\$               | $\triangleright$          |
| \unlhd                  | $\leq$          |   | $\backslash doteq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ė         | \unrhd            | $\trianglerighteq$        |
| $\gtrless$              | $\geq$          |   | \circeq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>•</u>  | $\label{lessgtr}$ | $\stackrel{\triangle}{>}$ |
| \mid                    |                 |   | $\backslash models$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>=</b>  | \parallel         |                           |
| \nmid                   | †               |   | $\\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \\ \ \ \ \\ \ \ \\ \ \ \\ \ \ \ \\ \ \ \\ \ \ \\ \ \ \ \\ \ \ \\ \ \ \ \\ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \\ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ \ \\ \ \ \ \ \ \\ \ \ \ \ \ \\ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$ | â         | $\n$              | #                         |

Die Zeichen \land lbzw. \rhd sind größer als die gleich aussehenden Operatoren \triangleleft bzw. \triangleright.

LyX unterstützt auch viele spezielle Relationen. Drücken Sie den Mathe-Werkzeugleistenknopf um eine Liste dieser Relationen zu sehen.

Relationen sind im Gegensatz zu Symbolen immer von Leerraum umgeben.

Relationen mit Beschriftungen können mit Hilfe des Befehls \stackrel erstellt werden:

| Befehl                            | Ergebnis                                  |
|-----------------------------------|-------------------------------------------|
| $A(r)\stackrel_r\to \inf_u A(r)\$ | $A(r) \stackrel{r \to \infty}{\approx} B$ |

# 15. Funktionen

#### 15.1. Vordefinierte Funktionen

Allgemein werden in mathematischen Ausdrücken Variablen kursiv gesetzt, Funktionsnamen hingegen nicht, denn sin könnte als  $s \cdot i \cdot n$  missverstanden werden. Aus diesem Grund gibt es vordefinierte Funktionen, die zusätzlich von Vorfaktoren etwas abgesetzt sind. Sie werden als Befehle mit einem Backslash vor dem Funktionsnamen eingefügt.

| Befehl       | Ergebnis    | Befehl          | Ergebnis       |
|--------------|-------------|-----------------|----------------|
| $A\sin(x)+B$ | Asin(x) + B | $A \sin(x) + B$ | $A\sin(x) + B$ |

Folgende Funktionen sind vordefiniert:

| Befehl                    | Befehl                     | Befehl                                   | Befehl                                   |
|---------------------------|----------------------------|------------------------------------------|------------------------------------------|
| \sin                      | \sinh                      | \arcsin                                  | \sup                                     |
| $\cos$                    | $\cosh$                    | $\arccos$                                | $\inf$                                   |
| an                        | \tanh                      | \arctan                                  | $\lim$                                   |
| $\setminus \cot$          | $\backslash \mathrm{coth}$ | $\arg$                                   | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |
| $\backslash \mathrm{sec}$ | $\min$                     | $\backslash \deg$                        | \limsup                                  |
| $\backslash \mathrm{csc}$ | $\max$                     | $\det$                                   | $\Pr$                                    |
| $\ln$                     | $\langle \exp$             | $\dim$                                   | $\backslash \mathrm{hom}$                |
| \lg                       | $\log$                     | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\gcd$                                   |

Sie können auch über den Mathe-Werkzeugleistenknopf eingefügt werden.

#### 15.2. Selbst definierte Funktionen

Will man eine Funktion verwenden, die nicht vordefiniert ist, wie z.B. die Signumfunktion sgn(x), hat man zwei Möglichkeiten:

• Man definiert die Funktion selbst. Dazu gibt man im LaTEX-Vorspann die Zeile \DeclareMathOperator{\sgn}{sgn}

 $ein^{30}$ . Nun kann man mit dem Befehl  $\setminus sgn$  die neu definierte Funktion aufrufen.

• Man schreibt die Formel wie gewohnt, markiert den Formelnamen, also in unserem Beispiel die Buchstaben sgn, und wandelt ihn in mathematischen Text um. Zwischen Vorfaktor und Funktion fügt man einen kleinen Leerraum ein.

Das Ergebnis ist bei beiden Methoden dasselbe wie bei einer vordefinierten Funktion $^{31}$ :

| Befehl                                                                    | Ergebnis                     |
|---------------------------------------------------------------------------|------------------------------|
| $A \setminus sgn(x) + B$                                                  | $A\operatorname{sgn}(x) + B$ |
| $A\setminus,\underbrace{\operatorname{sgn}}_{\operatorname{Alt-mm}}(x)+B$ | $A\operatorname{sgn}(x) + B$ |

Die erste Methode ist besser geeignet, wenn die selbst definierte Funktion mehrfach verwendet werden soll.

<sup>&</sup>lt;sup>30</sup>Näheres zu **\DeclareMathOperator** siehe Kap. 10.5.

 $<sup>^{31}</sup>$ Selbst definierte Funktionen werden in LyX rot, vordefinierte schwarz angezeigt.

#### 15.3. Grenzwerte

Für Grenzwerte sind außer \lim, \liminf und \limsup noch folgende Funktionen definiert:

| Befehl             | Ergebnis                          |
|--------------------|-----------------------------------|
| \varliminf         | $\underline{\lim}$                |
| $\varlim \sup$     | $\overline{\lim}$                 |
| $\vert varprojlim$ | $\varprojlim$                     |
| \varinjlim         | $\overset{\lim}{\longrightarrow}$ |

Der Grenzwert wird durch Tiefstellen erzeugt. Bei einer eingebetteten Formel wird er rechts neben die Funktion gesetzt:

Befehl Ergebnis 
$$\frac{\text{lim}_{x}\setminus \text{to}_{\square}A_{\square}x=B}{\text{lim}_{x\to A} x=B}$$

In einer abgesetzten Formel steht der Grenzwert wie gewohnt darunter:

$$\lim_{x \to A} x = B$$

Wie man den Schriftsatz von Grenzen einstellt, ist in Kap. 10.2 erklärt.

#### 15.4. Modulo-Funktionen

Eine Besonderheit stellt die Modulo-Funktion dar, denn es gibt sie in vier Varianten. Die Varianten in einer abgesetzten Formel:

| $\underline{\mathrm{Befehl}}$    | Ergebnis     |
|----------------------------------|--------------|
| $a \backslash mod_{\sqcup} b$    | $a \mod b$   |
| $a \backslash pmod_{\sqcup} b$   | $a \pmod{b}$ |
| $a \backslash b mod \llcorner b$ | $a \bmod b$  |
| $a \setminus pod_{\sqcup}b$      | a $(b)$      |

In einer eingebetteten Formel wird bei allen Varianten vor den Funktionsnamen weniger Leerraum gesetzt. Standardmäßig beachten die Modulo-Funktionen nur das erste, folgende Zeichen. Um mehrere Zeichen zu verwenden, muss man sie in TEX-Klammern setzen:

| $\underline{\mathrm{Befehl}}$                           | Ergebnis  |
|---------------------------------------------------------|-----------|
| $\mathrm{a}\backslash\mathrm{pod}_{\sqcup}\mathrm{bcd}$ | a $(b)cd$ |
| $a \pmod bc \to d$                                      | a (bc)d   |

# 16. Sonderzeichen

Die Zeichen ^ und \_ erzeugen normalerweise Exponenten bzw. Indizes. Um diese Zeichen zu erhalten, müssen sie mit einem \ eingegeben werden:

| Befehl   | Ergebnis |
|----------|----------|
| \^_<br>\ | _        |

#### 16.1. Sonderzeichen im mathematischen Text

Die folgenden Befehle können nur im mathematischen Textmodus oder im TEX-Modus verwendet werden:

| Befehl          | Ergebnis | _ | Befehl        | Ergebnis |
|-----------------|----------|---|---------------|----------|
| \oe             | œ        |   | \o            | Ø        |
| $\backslash OE$ | Œ        |   | $\setminus O$ | Ø        |
| \ae             | æ        |   | \l            | ł        |
| $\backslash AE$ | Æ        |   | $\L$          | Ł        |
| \aa             | å        |   | !'            | i        |
| $\backslash AA$ | Å        |   | ?'⊔           | j        |
| \i              | 1        | _ | \j            | J        |

Die Zeichen Å und  $\emptyset$  können auch über den Mathe-Werkzeugleistenknopf eingefügt werden.

Eine Ausnahme bilden die Befehle!' und ?', denn man kann sie in LyX direkt in den Text eingeben.

#### 16.2. Akzente im Text

Man kann mit den folgenden Befehlen sämtliche Buchstaben akzentuieren. Die Befehle müssen dazu im TEX-Modus eingegeben werden.

| Befehl | Ergebnis                 | <del>-</del> | Befehl                     | Ergebni              |
|--------|--------------------------|--------------|----------------------------|----------------------|
| \"e    | ë                        | _            | ∖H∟e                       | ő                    |
| \'e    | è                        |              | \'e                        | é                    |
| \^∟e   | ê                        |              | \~e                        | $\tilde{\mathrm{e}}$ |
| \=e    | ē                        |              | $\backslash .e$            | ė                    |
| \u∟e   | ĕ                        |              | $\v_{\sqcup} e$            | ě                    |
| \b∟e   | $\underline{\mathbf{e}}$ |              | $\backslash d _{\sqcup} e$ | ė                    |
| \t∟ee  | е̂е                      |              | $\backslash c \sqcup e$    | ę                    |

Mit dem Befehl  $\$ t können auch zwei verschiedene Zeichen akzentuiert werden. Der Befehl  $\$ t $_{\square}$ sz ergibt:  $\hat{sz}$ 

Die Akzente ', 'und ^ können in Verbindung mit Selbstlauten auch direkt über die Tastatur eingegeben werden ohne den TEX-Modus zu benutzen. Dasselbe gilt für die Tilde $^{32}$  ~ in Verbindung mit a, n oder o.

Die Befehle  $\$  ,  $\$  ,  $\$  d ,  $\$  ,  $\$  d ,  $\$  ,  $\$  u ,  $\$  und direkt über die Tastatur eingegebene Akzente sind auch im mathematischen Textmodus verfügbar. Für die restlichen Akzente gibt es in Formeln spezielle Mathebefehle, siehe Kap. 7.1.

Des Weiteren kann man mit dem Befehl \textcircled, ähnlich dem Copyrightsymbol, sämtliche Zahlen und Buchstaben in einen Kreis setzen, quasi mit einem Kreis akzentuieren.

| Befehl                                                                                                               | Ergebnis |
|----------------------------------------------------------------------------------------------------------------------|----------|
| $\texttt{\textcircled}\{w\}$                                                                                         | w        |
| $\label{large the large the large large} $$ \operatorname{\textcircled}(\operatorname{\textcircled}_{-1.5pt}_{W})$$$ | W        |

Man muss darauf achten, dass das Zeichen in einen Kreis passt. \Large<sup>33</sup> bestimmt dabei die Größe des Kreises. Mit Hilfe von \rangle raisebox<sup>34</sup> kann man das Zeichen zentrieren.

#### 16.3. Minuskelziffern

Minuskelziffern werden mit dem Befehl **\oldstylenums** erzeugt. Der Befehl ist sowohl in einer Formel als auch im T<sub>F</sub>X-Modus verwendbar. Das Befehlsschema lautet:

\oldstylenums{Ziffer}

Der Befehl \oldstylenums{0123456789 ergibt: 0123456789

#### 17. Formelstile

• Für abgesetzte Formeln gibt es zwei verschiedene Anordnungsstile:

Zentriert ist der voreingestellte Standard

**Eingerückt** dies kann im Menü Dokument ⊳ Einstellungen unter Mathe-Optionen eingestellt werden

<sup>&</sup>lt;sup>32</sup>Gilt nur für Tastaturen, bei denen die Tilde als Akzent definiert ist.

<sup>&</sup>lt;sup>33</sup>siehe Kap. 11.4

 $<sup>^{34}</sup>$ siehe Kap. 9.2

Wird **Eingerückt** verwendet, kann die Einrückung eingestellt werden. Der Standard-Wert hängt von der verwendeten Dokumentklasse ab.

• Und zwei verschiedene Nummerierungsstile, die im Menü Dokument > Einstellungen unter Mathe-Optionen eingestellt werden können:

Rechts ist in den meisten Fällen der Standard

#### Links

Die eingestellten Stile gelten für alle abgesetzten Formeln eines Dokuments. Möchte man jedoch in einem Dokument sowohl zentrierte als auch eingerückte ausgerichtete Formeln setzen, verwendet man den Stil **Zentriert**. Die einzurückenden Formeln setzt man dann in eine flalign-Umgebung, siehe Kap. 18.2.3.

# 18. Mehrzeilige Formeln

# 18.1. Allgemeines

In L<sub>Y</sub>X werden mehrzeilige Formeln erstellt, wenn man in einer Formel Strg+Enter drückt. Dies erzeugt entweder eine align-Umgebung, die in Kap. 18.2.1 beschrieben ist, oder, wenn die Option AMS-Mathe-Paket automatisch verwenden in den Dokumenteinstellungen nicht ausgewählt ist, eine eqnarray-Umgebung, die in Kap. 18.3 beschrieben ist. Es wird empfohlen die align-Umgebung zu verwenden, denn sie erscheint in jedem Fall typographisch korrekt in der Ausgabe.

Es gibt noch weitere mehrzeilige Formelumgebungen, die über das Menü Einfügen⊳ Mathe erstellt werden können. Diese Umgebungen werden in den folgenden Kapiteln beschrieben.

In allen mehrzeiligen Formelumgebungen erstellt man eine neue Zeile, indem man Strg+Enter drückt. Um Spalten hinzuzufügen oder zu entfernen, können die Mathe-Werkzeugleistenknöpfe bzw. oder das Menü Bearbeiten⊳Zeilen & Spalten verwendet werden.

#### 18.1.1. Zeilenabstand

Bei mehrzeiligen Formeln fehlt manchmal etwas Platz zwischen den Zeilen:

$$B^{2}(B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) + 4x_{0}^{2}x^{2} + 4x_{0}xD = -4x^{2}B^{2} + 4x_{0}xB^{2}$$
$$4x^{2}(B^{2} + x_{0}^{2}) + 4x_{0}x(D - B^{2}) + B^{2}(B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) = 0$$

In LaTeX wird zusätzlicher Zeilenabstand als optionales Argument des Zeilenumbruchbefehls angegeben. Dies ist in LyX aber nicht möglich<sup>35</sup>, weshalb man die ganze Formel im TeX-Modus eingeben muss. Um für unser Beispiel Leerraum einzufügen, gibt

 $<sup>^{35}</sup>$ siehe LyX-Fehler #1505

man am Ende der ersten Zeile den Befehl \\[3mm] ein. Damit erhält man:

$$B^{2}(B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) + 4x_{0}^{2}x^{2} + 4x_{0}xD = -4x^{2}B^{2} + 4x_{0}xB^{2}$$
$$4x^{2}(B^{2} + x_{0}^{2}) + 4x_{0}x(D - B^{2}) + B^{2}(B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) = 0$$

Möchte man den Zeilenabstand für alle Zeilen einer Formel festlegen, verändert man die Länge  $\setminus \mathbf{jot}$ . Es gilt Zeilenabstand = 6 pt +  $\setminus \mathbf{jot}$ . Voreingestellt ist für  $\setminus \mathbf{jot}$  der Wert 3 pt. Um wie im vorigen Beispiel 3 mm zusätzlichen Zeilenabstand zu erzeugen, gibt man den Befehl

#### $\left\{ \int \int {3mm + 3pt} \right\}$

im TeX-Modus vor der Formel ein. Das setzt voraus, dass das LaTeX-Paket  ${\bf calc}^{36}$  im LaTeX-Vorspann mit der Zeile

#### \usepackage{calc}

geladen wurde.

Man erhält:

$$B^{2}(B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) + 4x_{0}^{2}x^{2} + 4x_{0}xD = -4x^{2}B^{2} + 4x_{0}xB^{2}$$

$$4x^{2}(B^{2} + x_{0}^{2}) + 4x_{0}x(D - B^{2}) + B^{2}(B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) = 0$$

Um wieder zum voreingestellten Abstand zu wechseln, setzt man  $\setminus \mathbf{jot}$  auf den Wert 3 pt.

#### 18.1.2. Spaltenabstand

Mehrzeilige Formeln bilden eine Matrix. Eine Formel in der Eqnarray-Umgebung ist z.B. eine dreispaltige Matrix. Durch Änderung des Spaltenabstands in dieser Umgebung, kann man den Leerraum neben den Relationszeichen ändern.

Der Spaltenabstand wird mit der Länge \arraycolsep festgelegt, wobei gilt:

Spaltenabstand =  $2 \setminus arraycolsep$ .

Der im T<sub>F</sub>X-Modus eingegebene Befehl

#### $\left[ \left( \operatorname{arraycolsep} \right) \right]$

bewirkt also für alle folgenden Formeln einen Spaltenabstand von 2 cm. Um wieder zum voreingestellten Abstand zurückzukehren, setzt man \arraycolsep auf 5 pt.

Eine Formel mit 2 cm Spaltenabstand:

$$\begin{array}{ccc}
A & = & B \\
C & \neq & A
\end{array}$$

<sup>&</sup>lt;sup>36</sup>calc ist Teil jeder LAT<sub>F</sub>X-Standardinstallation.

Eine Formel mit dem für Matrizen voreingestellten Spaltenabstand von 10 pt:

$$A = B$$

$$C \neq A$$

#### 18.1.3. Lange Formeln

Lange Formeln kann man wie folgt setzen:

• Ist eine Seite der Gleichung deutlich kürzer als die Zeilenbreite, wählt man man diese als linke Seite und schreibt die rechte über zwei Zeilen:

$$H = W_{SB} + W_{mv} + W_D - \frac{\hbar^2}{2m_0} \Delta - \frac{\hbar^2}{2m_1} \Delta_1 - \frac{\hbar^2}{2m_2} \Delta_2 - \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{R}_1|} - \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{R}_2|} + \frac{e^2}{4\pi\varepsilon_0 |\mathbf{R}_1 - \mathbf{R}_2|}$$

$$(7)$$

Das Minuszeichen zu Beginn der zweiten Zeile erscheint eigentlich nicht als Operator, da es das erste Zeichen der Zeile ist. Deswegen wäre es nicht von Leerraum umgeben und ließe sich schlecht vom Bruchstrich unterscheiden. Um das zu verhindern, wurde mit dem Befehl \hspace 3 pt Leerraum hinter das Minuszeichen eingefügt.<sup>37</sup>

• Sind beide Seiten der Gleichung zu lang, verwendet man den Befehl \lefteqn. Dieser wird in die erste Spalte der ersten Zeile eingegeben und bewirkt, dass alle weiteren Eingaben die folgenden Spalten überschreiben:

$$4x^{2} (B^{2} + x_{0}^{2}) + 4x_{0}x (D - B^{2}) + B^{2} (B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) + D^{2}$$

$$- B^{2} - 2B\sqrt{r_{g}^{2} - x^{2} + 2x_{0}x - x_{0}^{2}} + r_{g}^{2} - x^{2} + 2x_{0}x - x_{0}^{2}$$

$$= B^{2} + 2(r_{g}^{2} + 2x_{0}x - x_{0}^{2} - r_{k}^{2}) + \frac{(r_{g}^{2} + 2x_{0}x - x_{0}^{2} - r_{k}^{2})^{2}}{B^{2}}$$
(8)

Nachdem man \lefteqn eingegeben hat, befindet sich der Cursor in einem pinkfarbenen Kästchen, das gegenüber dem blauen leicht verschoben ist. In dieses wird die Formel eingegeben.

Der Inhalt der weiteren Zeilen wird in die zweite oder eine andere Formelspalte eingegeben. Je größer die Spaltennummer in die eingegeben wurde, desto größer ist die Einrückung.

Bei der Verwendung von \lefteqn ist Folgendes zu beachten:

\* Die Formel nutzt nicht die gesamte Seitenbreite aus. Würde man in obigem Beispiel der ersten Zeile den Term  $-B^2$  anfügen, befände sich dieser außerhalb des Seitenrands. Um die Breite besser auszunutzen, kann man zu Beginn der ersten Zeile negativen Leerraum einfügen.

<sup>&</sup>lt;sup>37</sup>mehr zu \hspace siehe Kap. 8.2

- \* Aufgrund eines Fehlers in LyX kann der Cursor nicht mit der Maus in die erste Zeile gesetzt werden.<sup>38</sup> Man kann den Cursor nur an den Anfang der Zeile setzen und ihn mit den Pfeiltasten bewegen.
- Weitere Möglichkeiten lange Formeln zu setzen, bieten die in Kap. 18.5 und Kap. 18.6 beschriebenen Umgebungen.

#### 18.1.4. Mehrzeilige Brüche

Es gibt Fälle, in denen der Zähler und/oder Nenner eines Bruches zu lang ist als dass der Bruch auf eine Zeile passt. Es ist dann notwendig einen Zeilenumbruch innerhalb des Bruches einzufügen. Dazu gibt es den Befehl \splitfrac. Um ihn zu aktivieren, stellt man in den Dokumenteinstellungen unter Mathe-Optionen für das Paket mathtools die Option Immer laden ein. \splitfrac hat das Schema

#### \splitfrac{erste Zeile}{zweite Zeile}

und wird als Zähler und/oder Nenner verwendet:

$$a = \frac{xy + xy + xy + xy + xy}{z} \neq \frac{xy + \frac{xy}{z} + xy + xy + xy}{z}$$

Der Befehl für den ersten Zähler in obiger Formel lautet:

$$\left( xy+xy+xy+xy+xy-xy_{-}\right)$$

#### 18.1.5. Mehrzeilige Klammern

Bei Klammern, die über mehrere Zeilen gehen, tritt folgendes Problem auf:

$$A = \sin(x) \left[ \prod_{R=1}^{\infty} \frac{1}{R} + \cdots + B - D \right]$$

Die schließende Klammer ist kleiner als die öffnende, denn Klammern variabler Größe dürfen nicht über mehrere Zeilen gehen.

Um die Größe für die Klammer der zweiten Zeile anzupassen, beendet man die erste Zeile mit \right. und beginnt die zweite Zeile mit \left.³9. Nach \left. gibt man den Befehl \vphantom \prod \infty \Left. R=1} ein, denn der Multiplikations-operator mit seinen Grenzen ist das größte Symbol der ersten Zeile, und daran soll die zweite Klammer angepasst werden.

<sup>38</sup>LyX-Fehler #1429

<sup>&</sup>lt;sup>39</sup>mehr zu \left und \right siehe Kap. 5.1.2

Das Ergebnis sieht so aus:

$$A = \sin(x) \left[ \prod_{R=1}^{\infty} \frac{1}{R} + \cdots + B - D \right]$$

# 18.2. Align-Umgebungen

Align-Umgebungen können für jede Art von mehrzeiligen Formeln verwendet werden. Sie sind besonders geeignet um mehrere Formeln nebeneinander zu setzen.

Align-Umgebungen bestehen aus Spalten. Die ungeradzahligen Spalten sind rechts-, die geradzahligen linksbündig ausgerichtet. Jede Zeile einer Align-Umgebung kann nummeriert werden.

Align-Umgebung werden über das Menü Einfügen > Mathe erstellt. Über das Menü Bearbeiten > Mathe > Formelart ändern können bereits existierende Formeln in Align-Umgebungen umgewandelt werden.

Um Spalten hinzuzufügen oder zu entfernen, können die Mathe-Werkzeugleistenknöpfe bzw. oder das Menü Bearbeiten > Zeilen & Spalten verwendet werden.

#### 18.2.1. Standard align-Umgebung

Diese Align-Umgebung wird erstellt, indem man in einer Formel Strg+Enter drückt oder das Menü Einfügen > Mathe > AMS align-Umgebung aufruft.

Ein Beispiel für zwei nebeneinander stehende Formeln, die mit einer vierspaltigen align-Umgebung erzeugt wurden:

$$A = \sin(B) \qquad C = D$$

$$C \neq A \qquad B \neq D$$

Wie man sieht, werden die Formeln in dieser Umgebung so angeordnet, als würde sich vor der ersten und hinter jeder geraden Spalte ein \hfill<sup>40</sup> befinden. Ist der Formelstil **Eingerückt<sup>41</sup>** gewählt, wird die Formel ohne den \hfill vor der ersten Spalte gesetzt.

<sup>&</sup>lt;sup>40</sup>mehr zu **\hfill** siehe Kap. 8.2

 $<sup>^{41}</sup>$ Formelstile siehe Kap. 17

#### 18.2.2. Alignat-Umgebung

In der alignat-Umgebung gibt es keinen vordefinierten Spaltenabstand. Man kann ihn manuell durch die in Kap. 8 beschriebenen Leerräume einfügen.

Das vorige Beispiel in der alignat-Umgebung, bei dem zu Beginn der zweiten Formel 1 cm Leerraum eingefügt wurde:

$$A = \sin(B)$$
  $C = D$   
 $C \neq A$   $B \neq D$ 

Weil man den Spaltenabstand für jede Spalte einzeln einstellen kann, eignet sich diese Umgebung besonders für drei und mehr nebeneinander gesetzte Formeln.

#### 18.2.3. Flalign-Umgebung

Bei dieser Umgebung werden die ersten beiden Spalten immer so weit links und die letzten beiden Spalten so weit rechts wie möglich gesetzt. Dazu ein Beispiel:

$$A=1$$
  $B=2$   $C=3$   $X=-1$   $Y=-2$   $Z=4$ 

Erzeugt man eine flalign-Umgebung mit ungerader Spaltenanzahl und gibt in die letzte Spalte eine leere TEX-Klammer ein, kann man einzelne Formeln im Dokument links setzen obwohl der Formelstil **Zentriert** eingestellt ist. Als Beispiel die eingerückte ausgerichtete Formel (5):

$$\iiint\limits_{V} X \, \mathrm{d}V = U \tag{9}$$

In den ersten beiden Spalten befindet sich die Formel. Damit sie wie beim Formelstil **Eingerückt** vom Rand etwas abgesetzt ist, wurde zu Beginn der ersten Spalte 30 pt Leerraum eingefügt.

# 18.3. Eqnarray-Umgebung

Hat man diese Umgebung erzeugt, erscheinen drei blaue Kästchen. Der Inhalt des ersten Kästchens wird rechtsbündig, der des letzten linksbündig ausgerichtet. Der Inhalt des mittleren Kästchens erscheint zentriert und etwas kleiner, da dieses Kästchen nur für Relationzeichen gedacht ist.

$$\begin{array}{ccc} ABC & ABC \\ \hline D & D & D \\ AB & AB & AB \\ A & = & A \end{array}$$

# 18.4. Gather-Umgebung

Diese Umgebung besteht nur aus einer Spalte, deren Inhalt zentriert ist. Jede Zeile kann nummeriert werden.

$$A = 1 \tag{10}$$

$$X = -1 \tag{11}$$

# 18.5. Multline-Umgebung

Die multline-Umgebung besteht wie die Gather-Umgebung nur aus einer Spalte. Jedoch ist die erste Zeile links, die letzte rechts ausgerichtet. Alle anderen Zeilen sind zentriert. Dadurch eignet sich diese Umgebung besonders für lange Formeln. Als Beispiel Formel (8) in der multline-Umgebung:

$$4x^{2} (B^{2} + x_{0}^{2}) + 4x_{0}x (D - B^{2}) + B^{2} (B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) + D^{2}$$

$$- B^{2} - 2B\sqrt{r_{g}^{2} - x^{2} + 2x_{0}x - x_{0}^{2}} + r_{g}^{2} - x^{2} + 2x_{0}x - x_{0}^{2}$$

$$= B^{2} + 2(r_{g}^{2} + 2x_{0}x - x_{0}^{2} - r_{k}^{2}) + \frac{(r_{g}^{2} + 2x_{0}x - x_{0}^{2} - r_{k}^{2})^{2}}{B^{2}}$$
(12)

In der Ausgabe erscheint nur die letzte (erste) Zeile einer multline-Umgebung nummeriert, wenn rechts (links) nummeriert wird. $^{42}$ 

Mit den Befehlen \shoveright und \shoveleft kann eine zentrierte Zeile rechts bzw. links ausgerichtet werden. Die Befehle werden folgendermaßen verwendet:

#### \shoveright{Zeileninhalt} bzw. \shoveleft{Zeileninhalt}

Die Länge \multlinegap legt den Abstand der ersten Zeile vom linken Seitenrand fest. Voreingestellt ist die Länge 0 pt.

Als Beispiel obige Formel, vor der im TFX-Modus der Befehl

#### $\left[ \left( \mathbf{C} \right) \right]$

eingegeben wurde:

$$4x^{2} (B^{2} + x_{0}^{2}) + 4x_{0}x (D - B^{2}) + B^{2} (B^{2} - 2r_{g}^{2} + 2x_{0}^{2} - 2r_{k}^{2}) + D^{2}$$

$$- B^{2} - 2B\sqrt{r_{g}^{2} - x^{2} + 2x_{0}x - x_{0}^{2}} + r_{g}^{2} - x^{2} + 2x_{0}x - x_{0}^{2}$$

$$= B^{2} + 2(r_{g}^{2} + 2x_{0}x - x_{0}^{2} - r_{k}^{2}) + \frac{(r_{g}^{2} + 2x_{0}x - x_{0}^{2} - r_{k}^{2})^{2}}{B^{2}}$$
(13)

Die zweite Zeile wurde mit \shoveleft linksbündig ausgerichtet.

 $<sup>^{42} \</sup>mathrm{Nummerierungsstile}$ siehe Kap. 17

#### 18.6. Mehrzeilige Formelteile

Möchte man nur Teile einer Formel mehrzeilig darstellen, verwendet man eine der folgenden Umgebungen: **aligned**, **alignedat**, **gathered** oder **split**. Sie können über das Menü Einfügen ▷ Mathe oder mit Befehlen eingefügt werden, wie in diesem Abschnitt beschrieben.

Die ersten drei haben dieselben Eigenschaften wie die entsprechenden mehrzeiligen Formelumgebungen. Man kann jedoch zusätzlich weitere Formelteile daneben setzen. Dazu ein Beispiel:

$$\Delta x \Delta p \geq \frac{\hbar}{2}$$

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$
Unbestimmtheitsrelationen

Um diese Formel zu erhalten, wird eine abgesetzte Formel erstellt, in die der Befehl **\aligned** eingegeben wird. Es erscheint eine lila Box um das blaue Formelkästchen in der man nun Spalten und Zeilen hinzufügen kann. Außerhalb der mehrzeiligen Umgebung können Formelteile, wie die Klammer, gesetzt werden.

Die aligned-Umgebung eignet sich auch für lange Formeln, deren Zeilen horizontal ausgerichtet sind. Verwendet man aligned in einer abgesetzten Formel, hat das den Vorteil, dass die Formelnummer vertikal mittig hinter den Zeilen steht. Als Beispiel Formel (7) in der aligned-Umgebung:

$$H = W_{SB} + W_{mv} + W_D - \frac{\hbar^2}{2m_0} \Delta - \frac{\hbar^2}{2m_1} \Delta_1 - \frac{\hbar^2}{2m_2} \Delta_2 - \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{R}_1|} - \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r} - \mathbf{R}_2|} + \frac{e^2}{4\pi\varepsilon_0 |\mathbf{R}_1 - \mathbf{R}_2|}$$

$$(14)$$

Möchte man die Umgebung **alignedat**, **gathered** oder **split** verwenden, gibt man den Befehl **\alignedat**, **\gathered** bzw. **\split** ein. Die split-Umgebung hat dieselben Eigenschaften wie die aligned-Umgebung, jedoch darf sie nur zwei Spalten enthalten.

# 18.7. Text in mehrzeiligen Formeln

Bei den Align-Umgebungen sowie der multline- und gather-Umgebung besteht die Möglichkeit Text einzufügen, der in einer eigenen Zeile erscheint und die Ausrichtung der Spalten nicht beeinflusst. Dazu wird der Befehl \intertext nach folgendem Schema benutzt:

# \intertext{Text}

Der Text sollte nicht länger als eine Zeile sein, da er nicht umgebrochen werden kann. Weil LyX \intertext noch nicht direkt unterstützt, schreibt man den Text

als mathematischen Text. \intertext muss dabei zu Beginn einer Zeile stehen und erscheint in der Ausgabe über dieser Zeile. Ein Beispiel bei dem der Text zu Beginn der zweiten Zeile eingegeben wurde:

$$I = a\sqrt{2} \int_0^{2\pi} \sqrt{1 + \cos(\phi)} \, d\phi \tag{15}$$

Integrand ist symmetrisch zu  $\phi = \pi$ , daher

$$=2a\sqrt{2}\int_0^{\pi}\sqrt{1+\cos(\phi)}\,d\phi\tag{16}$$

\intertext erzeugt immer etwas vertikalen Leerraum zwischen dem Text und den Formelzeilen. Um dies zu vermeiden, stellt man in den Dokumenteinstellungen unter Mathe-Optionen für das Paket mathtools die Option Immer laden ein. Man kann nun den Befehl \shortintertext statt \intertext verwenden:

$$I = a\sqrt{2} \int_0^{2\pi} \sqrt{1 + \cos(\phi)} \, d\phi \tag{17}$$

Integrand ist symmetrisch zu  $\phi = \pi$ , daher

$$=2a\sqrt{2}\int_0^{\pi}\sqrt{1+\cos(\phi)}\,\mathrm{d}\phi\tag{18}$$

# 19. Formelnummerierung

# 19.1. Allgemeines

Nummerierte Formeln können mit dem Menü Einfügen ▷ Mathe ▷ Nummerierte Formel (Tastenkürzel Strg+Alt N) erstellt, bestehende Formeln über das Menü Bearbeiten ▷ Mathe ▷ Nummerierung an/aus (Tastenkürzel Alt+M N) nummeriert werden. Die Formelnummer erscheint in LyX hinter der Formel als Nummer in runden Klammern.

Wird in mehrzeiligen Formeln die Nummerierung angeschaltet, werden alle Zeilen nummeriert. Man kann jedoch über das Menü Bearbeiten ⊳ Mathe ⊳ Zeilennummerierung an/aus (Tastenkürzel Alt+M Shift+N) für jede Zeile die Nummerierung festlegen.

Außer eingebetteten können alle Formeln in zwei verschiedenen Stilen nummeriert werden, siehe Kap. 17.

# 19.2. Querverweise

Es kann auf alle Formeln verwiesen werden, die eine Marke besitzen. Eine Marke wird mit dem Menü Einfügen > Marke oder dem Werkzeugleistenknopf gesetzt. Dabei muss sich der Cursor in einer abgesetzten Formel befinden. Alternativ klickt man

mit rechts auf die Formel und wählt Formelmarke. Es erscheint ein Eingabefeld mit dem voreingestellten Eintrag eq:, nachdem der eigentliche Markenname eingegeben wird. Der voreingestellte Eintrag steht für "equation" und erleichtert bei größeren Dokumenten die Zuordnung, dass die Marke zu einer Formel und nicht zu einem Kapitel gehört. Um eine Marke zu ändern, wählt man wieder das Menü Einfügen⊳ Marke oder man klickt mit rechts auf eine Formel und dann auf Formelmarke.

Der Name der Marke erscheint in LyX in zwei runden Klammern hinter der Formel. Eine Formel mit Marke wird immer nummeriert.

Querverweise werden mit dem Menü Einfügen > Querverweis oder dem Werkzeugleistenknopf eingefügt. Ein Querverweis auf Formeln erscheint im Ausdruck als Formelnummer. Wenn man im Querverweis Dialogfenster das Format (<Querverweis>) wählt, erscheint der Querverweis als Formelnummer in Klammern.

Drückt man in LyX mit der rechten Maustaste auf einen Querverweis, gelangt man zur Formel auf die verwiesen wird.

Als Beispiel folgen Querverweise zu Formeln aus diesem Kapitel:

Die Gleichungen (etwas) und (20b) sind äquivalent. In (Y) werden im Gegensatz zu (XXIII) große lateinische Buchstaben zur Nummerierung verwendet.

Ist im Argument von  $\backslash tag^{43}$  wie in Kap. 9.4 eine Box angegeben, kann nicht auf die Formel verwiesen werden.

# 19.3. Unternummerierung

Formeln können als Untergleichungen nummeriert werden. Um diese Funktion zu aktivieren, fügt man das Modul Untergleichungen im Menü Dokument ⊳ Einstellungen ⊳ Module zum Dokument hinzu. Um Untergleichungen einzufügen, verwendet man das Menü Einfügen ⊳ Benutzdefinierte Einfügungen ⊳ Untergleichungen.

Die Gleichungen, die unternummeriert werden sollen, wenden in die Untergleichungen-Einfügung eingegeben. Ein Beispiel:

$$A = C - B \tag{19}$$

$$B = C - A \tag{20a}$$

$$C = A + B \tag{20b}$$

Jede Formel in der Untergleichungen-Einfügung wird mit a, b, c, . . . in der Ausgabe untergliedert. Bei mehrzeiligen Formeln wird jede Zeile untergliedert.

Auf Untergleichungen zu verweisen funktioniert wie bei normalen Formeln: (20a), (20b). Wenn man kollektiv auf die untergliederten Formeln verweisen will, fügt man

 $<sup>^{43}</sup>$ \tag ist in Kap. 19.5 beschrieben.

eine Marke als erste Sache in die Untergleichungen-Einfügung ein und verweist darauf. Formel (21) ist ein Beispiel dafür.

Durch das Einfügen der Untergleichungen wird davor etwas Leerraum erstellt. Um diesen zu entfernen, fügt man direkt vor die Untergleichungen-Einfügung -5 mm vertikalen Leerraum ein. Ist der Formelstil Eingerückt<sup>44</sup> gewählt, fügt man -7 mm Leerraum ein.

Um eine andere Unternummer als kleine lateinische Buchstaben zu erhalten, fügt man diesen Befehl im TeX-Modus vor die Gleichungen in der Untergleichungen-Einfügung:

#### \renewcommand{\theequation}{\theparentequation - \roman{equation}}

\theparentequation erzeugt hierbei die Hauptnummer und \roman{equation} fügt eine kleine römische Zahl als Unternummer hinzu. Für weitere Informationen zur benutzerdefinierten Nummerierung, siehe Kap. 19.4.

Hier ist ein Beispiel für mehrzeilige Formeln, bei dem die Nummerierung angepasst und in der zweiten Zeile abgeschaltet wurde:

$$A = (B - Z)^{2} = (B - Z)(B - Z)$$

$$= B^{2} - ZB - BZ + Z^{2}$$
(21-i)

$$= B^2 - 2BZ + Z^2 (21-ii)$$

# 19.4. Nummerierung mit römischen Zahlen und Buchstaben

Formeln können auch mit römischen Zahlen und lateinischen Buchstaben nummeriert werden. Um z.B. mit kleinen römischen Zahlen zu nummerieren, gibt man vor der Formel im TEX-Modus den Befehl

# 

ein. \renewcommand weist dem vordefinierten Befehl \theequation den Befehl \roman{equation} zu. 45 equation ist der Formelzähler. Stellt man einem Zähler den Befehl \the voran, bewirkt dies, dass der Wert des Zählers als arabische Zahl ausgegeben wird. Gibt man an, dass eine Formel nummeriert wird, setzt LATEX intern den Befehl \theequation hinter die Formel. \roman{equation} bewirkt, dass der Formelzähler als kleine römische Zahl erscheint.

Alle Formeln nach dem \renewcommand-Befehl werden nun römisch nummeriert. Um auf Nummerierung mit großen römischen Zahlen umzuschalten, gibt man den Befehl erneut ein, ersetzt aber \roman durch \Roman. Für die "Nummerierung" mit lateinischen Buchstaben gibt es den Befehl \alph für kleine und \Alph für große Buchstaben.

 $<sup>^{44}</sup>$ Formelstile siehe Kap. 17

<sup>&</sup>lt;sup>45</sup>Der Befehl **\renewcommand** besitzt dasselbe Schema wie der in Kap. 22.1 beschriebene Befehl **\newcommand**.

Achtung: Es können nur maximal 26 Formeln in einem Dokument mit lateinischen Buchstaben nummeriert werden.

$$A = \text{r\"{o}misch}$$
 (xxii)

$$B = R\ddot{o}misch$$
 (XXIII)

$$C = \text{lateinisch}$$
 (x)

$$D = \text{Lateinisch}$$
 (Y)

Um wieder auf Standardnummerierung umzuschalten, gibt man folgenden Befehl ein: \renewcommand{\theequation}{\arabic{equation}}

$$E = \text{arabisch}$$
 (26)

Wie man sieht, werden die Formeln unabhängig von der Nummerierungsart durchnummeriert. Soll beim Wechsel der Nummerierungsart die Nummerierung wieder mit Eins beginnen, müssen neue Formelzähler angelegt werden. Eine Beschreibung dazu findet man in der Datei Formelnummerierung.lyx.

# 19.5. Benutzerdefinierte Nummerierung

Achtung: Wenn man die Dokumentsprache von recht nach links liest, wie z.B. bei Arabisch, muss man im LaTeX-Vorspann Folgendes hinzufügen, damit man die in diesem Abschnitt beschriebenen Befehle verwenden kann:

Bei der Standardnummerierung werden um die Formelnummern runde Klammern gesetzt. Will man diese Klammern z.B. durch senkrechte Striche ersetzen, gibt man im LATEX-Vorspann Folgendes an:

Möchte man andere Zeichen haben, ersetzt man die Striche neben #1 durch ein oder mehrere gewünschte Zeichen. Möchte man nur die Formelnummer haben, lässt man die Striche weg.

Soll statt einer fortlaufenden Nummer ein beliebiger Ausdruck in den Klammern hinter der Formel stehen, benutzt man den Befehl \tag:

$$A + B = C (etwas)$$

In diesem Beispiel wurde in der Formel der Befehl \tag\_etwas eingegeben.

Gibt man stattdessen \tag\*\_etwas ein, verhindert der Stern die Klammern um den Ausdruck:

$$A + B = C$$
 etwas

Möchte man die Formelnummerierung neu starten wenn ein neuer Dokumentteil oder -abschnitt beginnt, verwendet man folgende LATEX-Vorspannzeile:

#### $\@addtoreset{equation}{part}$

bzw.

#### \@addtoreset{equation}{section}

Um diese Befehle im TEX-Modus benutzen zu können, muss das "@" Zeichen für LATEX mit dem Befehl \makeatletter "aktiv" gemacht werden. Der Befehl \makeatother macht dies wieder rückgängig. Daher ist die Befehlssequenz im TEX-Modus:

#### \makeatletter

 $\@addtoreset{equation}{section}$ 

\makeatother

Im LaTeX-Vorspann können \makeatletter und \makeatother weggelassen werden, da LyX sie automatisch intern einfügt.

Um \@addtoreset rückgängig zu machen, muss die Datei remreset.sty<sup>46</sup> im L<sup>A</sup>T<sub>E</sub>X-Vorspann mit der Zeile

#### \usepackage{remreset}

geladen werden. Dann kann der Befehl \@removefromreset mit dem selben Schema wie \@addtoreset benutzt werden.

Oftmals möchte man Formeln in folgender Art nummerieren:

#### (Kapitelnummer.Formelnummer)

Dabei soll die Formelnummer bei jedem Kapitel wieder mit Eins beginnen.

Für diesen Fall gibt es den Befehl \numberwithin, der nach folgendem Schema benutzt wird:

#### \numberwithin{Z\"ahler}{Gliederung}

Zähler gibt an, welche Nummerierung betroffen ist. Gliederung gibt an, welche Nummer vor dem Punkt steht.

In unserem Fall gibt man demnach folgende LATEX-Vorspann- oder TEX-Code-Zeile ein:

#### \numberwithin{equation}{section}

 $<sup>^{46}</sup>$ remreset ist Teil des LAT<sub>E</sub>X-Paketes carlisle, das Teil jeder LAT<sub>E</sub>X-Standardinstallation ist.

Das ist das Ergebnis:

$$A + B = C \tag{19.27}$$

Möchte man z.B. Tabellen nummerieren, so dass die Nummer des Teils vor dem Punkt steht, gibt man \numberwithin{table}{part} ein.

Um wieder auf Standardnummerierung umzuschalten oder um diese Art der Nummerierung zu vermeiden wenn sie von der Dokumentklasse vorgegeben ist, gibt man folgenden Befehl als TEX-Code oder als LATEX-Vorspannzeile ein:

\renewcommand{\thetable}{\arabic{table}}

\numberwithin benutzt intern den oben beschriebenen Befehl \@addtoreset, der ebenfalls rückgängig gemacht werden muss.

# 20. Chemische Symbole und Reaktionsgleichungen

Ein Beispieltext aus der Chemie:

Das  $SO_4^{2-}$ -Ion verbindet sich mit zwei  $Na^+$ -Ionen zu Natriumsulfat ( $Na_2SO_4$ ). Die Reaktionsgleichung dazu lautet:

$$2 \operatorname{Na}^{+} + \operatorname{SO}_{4}^{2-} \longrightarrow \operatorname{Na}_{2} \operatorname{SO}_{4}$$
 (28)

Diese Reaktionsgleichung kann direkt als Formel erstellt werden. Damit die Symbole nicht kursiv erscheinen, markiert man sämtliche Zeichen in der Formel und wandelt diese mit der Tastenkombination Alt+Z R in den aufrechten Schriftstil um. 47

Eine komfortablerer Weg chemische Formeln zu setzen, ist es den Befehl \ce zu benutzen. Dieser ist verfügbar, wenn das LATEX-Paket mhchem installiert ist. Nachdem \ce in eine Formel eingefügt wurde, erscheint eine neue blaue Box in die chemische Formeln in intuitiver Weise eingegeben werden können.

<sup>&</sup>lt;sup>47</sup>Schriftstile siehe Kap. 11.1

| Befehl                                                                                                                     | Ergebnis                                                       |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| \ce⊔H2CO3                                                                                                                  | $\mathrm{H_2CO_3}$                                             |
| $\ensuremath{\ce_{\sqcup}}SO4^2-$                                                                                          | $\mathrm{SO_4}^{2-}$                                           |
| $\c _{\sqcup}({ m NH4})2{ m S}$                                                                                            | $(\mathrm{NH_4})_2\mathrm{S}$                                  |
| $\c_{ m LKCr(SO4)}$ 2.12H2O                                                                                                | $\mathrm{KCr}(\mathrm{SO}_4)_2 \cdot 12\mathrm{H}_2\mathrm{O}$ |
| $\label{eq:ce_A-B} $$ \ensuremath{\mbox{\sc hond}}_{\mbox{\sc hond}}$C\ \ensuremath{\mbox{\sc hond}}_{\mbox{\sc hond}}$$ $ | $A-B=C\equiv D$                                                |
| $\c_227$ _90 $\rightarrow$ Th+                                                                                             | $^{227}_{90}{ m Th}^{+}$                                       |
| $\cesim ce_{\sqcup} \norm{hyphen}_{\sqcup} Cl$                                                                             | μ-Cl                                                           |
| $\celosebox{Ce} CO2 + CC < > 2CO$                                                                                          | $CO_2 + C \Longrightarrow 2 CO$                                |
| $\label{eq:colored} $\operatorname{CO2}_{\square} + \operatorname{C}_{\square} > [\alpha][\beta]_{\square} 2CO$} $$        | $CO_2 + C \xrightarrow{\alpha \atop \beta} 2 CO$               |

Achtung: Es ist nicht möglich in LyX das Zeichen ^ zu verwenden um einen Pfeil nach oben zu bekommen, wie es im mhchem-Handbuch steht. Man verwendet stattdessen einen kleinen negativen Leerraum gefolgt vom Befehl \uparrow:  $Fe + 2H^+ \longrightarrow Fe^{2+} + H_2 \uparrow$ 

Um mehrzeilige chemische Gleichungen zu erzeugen, wird zuerst eine mehrzeilige Formel erstellt, wie in Kap. 18 beschrieben. Anschließend wird in jeder kleinen blauen Box der Formel der Befehl \ce verwendet. (29) und (30) sind ein Beispiel für eine mehrstufige chemische Reaktion, bei der jede Gleichung eine eigene Nummer hat.

$$TEOS + 4O \longrightarrow Si(OH)_4 + 4C_2H_4O$$

$$Si(OH)_4 \longrightarrow SiO_2 + 2H_2O$$
(29)
(30)

$$Si(OH)_4 \longrightarrow SiO_2 + 2H_2O$$
 (30)

Außer \ce bietet das Paket mhchem noch den Befehl \cf für spezielle Fälle. Mehr über \cf und weitere Beispiele sind in der Dokumentation von mhchem zu finden, [7].

# 21. Diagramme

LyX unterstützt zwei Typen kommutativer Diagramme: amscd und xymatrix, die im Folgenden erläutert sind.

### 21.1. amscd Diagramme

Diagramme dieses Typs stellen Beziehungen mittels horizontaler und vertikaler Linien oder Pfeilen dar:

$$\begin{array}{cccc} A & \longrightarrow & B & \longrightarrow & C \\ \uparrow & & & \downarrow \\ F & \longleftarrow & E & \longleftarrow & D \end{array}$$

Um sie zu erstellen, gibt man in einer Formel den Befehl **\CD** ein. Es erscheint ein blaues Kästchen mit zwei gestrichelten Linien, in das man die weiteren Befehle eingibt. Mit **Strg+Enter** wird eine neue Zeile erstellt. Horizontale Beziehungen werden in ungerade Zeilen, vertikale in gerade Zeilen der Formel eingegeben.

Zum Erstellen der Beziehungen gibt es folgende Befehle:

- @<<< erstellt einen Linkspfeil, @>>> einen Rechtspfeil und @= ein langes Gleichheitszeichen
- @AAA erstellt einen Pfeil nach oben, @VVV einen Pfeil nach unten und @| ein senkrechtes Gleichheitszeichen
- @. dient als Platzhalter für nicht vorhandene Beziehungen

Alle Pfeile sind wie folgt beschriftbar:

- Wird bei horizontalen Pfeilen zwischen dem ersten und zweiten < bzw. > Text eingegeben, erscheint er über dem Pfeil. Wird der Text zwischen dem zweiten und dritten < bzw. > eingegeben, erscheint er unter dem Pfeil.
- Wird bei vertikalen Pfeilen Text zwischen erstem und zweitem A bzw. V eingegeben, erscheint er links neben dem Pfeil. Bei Eingabe zwischen zweitem und drittem A bzw. V erscheint er rechts daneben. Enthält der Text ein A oder V, müssen diese Buchstaben in eine TeX-Klammer gesetzt werden.

Als Beispiel ein Diagramm mit allen möglichen Beziehungen:

Der Befehl dazu lautet:

$$\label{eq:cd_A} $$ \CD_A@>j>>B@>>k>C@=F Strg+Enter \\ @AmAA@.@VV\\ $V\to V@| Strg+Enter \\ D@<< jk>>F@=C \\$$

# 21.2. xymatrix Diagramme

Um Xymatrizen nutzen zu können, muss das LaTeX-Paket **xypic** installiert sein. Eine Xymatrix wird erstellt, indem der Befehl \**xymatrix** in eine Formel eingegeben wird. Dann können Sie neue Matrixspalten und -zeilen wie bei normalen Matrizen hinzufügen, siehe Kap. 4.

Im Gegensatz zu amscd Diagrammen, unterstützen Xymatrixen diagonale und gekrümmte Pfeile und vieles mehr. Alle Möglichkeiten kommutative Diagramme und Dekorationen zu erzeugen, sind im Detail im XY-pic-Handbuch erklärt, dass im Menü Hilfe  $\triangleright$  Spezielle Handbücher zu finden ist.

# 21.3. Feynman Diagramme

Um Feynman-Diagrammen nutzen zu können, muss das LaTeX-Paket **feyn** installiert sein. Ein Feynman-Diagramm wird erstellt, indem der Befehl **\Diagram** in eine Formel eingegeben wird. Dann können Sie neue Matrixspalten und -zeilen wie bei normalen Matrizen hinzufügen, siehe Kap. 4.

Beispiele wie man in LyX FEYNMAN-Diagramme erstellt sind im Feynman-Diagramm Handbuch gegeben, dass im Menü Hilfe > Spezielle Handbücher zu finden ist.

# 22. Benutzerdefinierte Befehle

Achtung: Die Namen von benutzerdefinierten Befehlen und Makros dürfen nur aus lateinischen Buchstaben bestehen.

# 22.1. Der Befehl \newcommand

Viele der Lagen Errex-Befehle sind für den ständigen Gebrauch viel zu lang. Man kann sich aber mit dem Befehl \newcommand neue kürzere Befehle definieren.

Das Befehlsschema von \newcommand lautet:

# \newcommand{neuer Befehlsname}[Argumentanzahl][optionaler Wert] {Befehlsdefinition}

Achtung: Es muss darauf geachtet werden, dass der Befehlsname nicht schon im Dokument oder von benutzten LaTeX-Paketen verwendet wird. Definiert man beispielsweise für \Leftarrow den Befehl \le, erhält man eine Fehlermeldung, denn \le ist schon für "≤" definiert.

Die Argumentanzahl ist eine ganze Zahl im Bereich 0-9 und gibt an, wie viele Argumente der neue Befehl haben soll. Als optionalen Wert kann man den Wert für ein

optionales Argument voreinstellen. Wenn man dies macht, bedeutet das gleichzeitig, dass das *erste* Argument des neuen Befehls ein optionales ist.

Es folgen einige Beispiele:

• Will man für \Longrightarrow den Befehl \gr definieren, lautet die LATEX-Vorspannzeile:

#### $\newcommand{\gr}{\Longrightarrow}$

• Um für den Befehl \underline den Befehl \us zu definieren, muss das Argument (was unterstrichen werden soll) berücksichtigt werden. Dazu sieht die Vorspannzeile wie folgt aus:

#### $\newcommand{\us}[1]{\underline{#1}}$

Das Zeichen # fungiert als Argumentplatzhalter, die 1 dahinter gibt an, dass es der Platzhalter für das erste Argument ist.

• Für \framebox kann man z. B. den Befehl \fb definieren:

$$\newcommand { fb}[3] { framebox #1#2{$#3$}}$$

Die beiden Dollarzeichen erstellen hierbei die für \framebox geforderte weitere Formel, siehe Kap. 9.1.

• Um einen neuen Befehl für \fcolorbox zu erstellen, bei dem die Farbe der Box nicht mehr angegeben werden muss, definiert man das Argument für die Farbe als optional:

$$\label{lem:command} $$\operatorname{cb}[3][\white]{\fcolorbox{\#2}{\#1}{\$\#3\$}}$$$

Gibt man bei der Verwendung von \cb die Farbe nicht an, wird die voreingestellte Farbe white verwendet.

Ein Test der neu definierten Befehle:

| Befehl                                                                        | Ergebnis              |
|-------------------------------------------------------------------------------|-----------------------|
| $\mathrm{A} \backslash \mathrm{gr}_\sqcup \mathrm{B}$                         | $A \Longrightarrow B$ |
| $us{ABcd}$                                                                    | $\underline{ABcd}$    |
| $\label{eq:fb} $$ \fb{[2cm]} \to \f-\f-\f-\f-\f-\f-\f-\f-\f-\f-\f-\f-\f-\$    | $\int A = B$          |
| $\cb{red} \rightarrow \backslash \{ \clint_{\sqcup} A = B$                    | $\int A = B$          |
| $\label{eq:cb[green]} $$ \cb[green] \leq - (\chindrel{eq:cb[green]} A = B $$$ | $\int A = B$          |

#### 22.2. Mathe-Makros

Besonders praktisch sind eigene Befehle für komplexe Ausdrücke. Hat man es in einem Dokument z. B. häufiger mit quadratischen Gleichungen zu tun, tritt immer derselbe

Lösungstyp auf. Die allgemeine Form einer quadratischen Gleichung ist

$$0 = \lambda^2 + p\lambda + q$$

Die allgemeine Form der Lösung lautet

$$\lambda_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Um für die Lösungsformel einen Befehl zu definieren, bei dem nur noch die drei Parameter  $\lambda$ , p und q angegeben werden müssen und der Index von  $\lambda$  optional angeben werden kann, lautet die LATEX-Vorspannzeile

$$\label{eq:gammand} $$\operatorname{qG}[4][1,\,2]{\#2_{\#1}=-\frac{\#3}{2}}pm \\ \operatorname{qc}{\#3^{2}}{4}-\#4}$$$

Um damit die Lösungsformel zu erstellen, gibt man in einer Formel den Befehl  $\qG{\lambda ambda} \rightarrow \q q$  ein.

Die Definition des neuen Befehls ist unintuitiv, denn man muss die Schemata aller verwendeten LATEX-Befehle kennen, z. B. dass ein Bruch in LATEX mit \frac{Zähler} {Nenner} eingegeben wird. Außerdem kann man leicht eine geschweifte Klammer vergessen und man kann in LAX nicht sehen, was der neue Befehl macht. Um diesen Problemen aus dem Weg zu gehen, gibt es in LAX die Möglichkeit Mathe-Makros statt den Befehl \newcommand zu verwenden.

Ein Mathe-Makro wird erstellt, indem man das Menü Einfügen > Mathe > Makro oder den Werkzeugleistenknopf verwendet. Es erscheint die Mathe-Makro-Werkzeugleiste und folgende Box, in der das Makro definiert wird:

\newmacroname ist der voreingestellte Makroname, der auf etwas sinnvolles geändert werden sollte. In das erste blaue Kästchen gibt man die gewünschte Formel ein. Einen Argumentplatzhalter fügt man mit dem Befehl \#Argumentnummer ein, z. B. \#1 oder man verwendet den Makro-Werkzeugleistenknopf . Argumentplatzhalter werden rot dargestellt. Es sind maximal 9 Argumente möglich. Optionale Argumente werden mit dem Werkzeugleistenknopf erstellt. Mit dem Werkzeugleistenknopf kann das erste nicht-optionale Argument in ein optionales verwandelt werden. Im zweiten Kästchen kann man definieren wie das Makro in LyX angezeigt werden soll. Normalerweise will man es so sehen, wie es definiert wurde, wozu man das Kästchen leer lässt. Hat man hingegen ein Makro erstellt, der auf dem Bildschirm viel Platz einnimmt, kann man in das Kästchen z. B.

eingeben. Für das Makro werden dann in L<sub>Y</sub>X nur die Argumente mit dem davor stehenden Makronamen angezeigt, was für mehr Überblick im Dokument sorgt. Im Ausdruck erscheint die Formel so, wie sie im ersten Kästchen definiert wurde.

Das Erscheinungsbild von Makros in Formeln lässt sich außerdem für einzelne Makros ändern, indem man den Cursor in das Makro setzt und das Menü Ansicht⊳ Mathe-Makro auf/zuklappen verwendet.

Um ein Makro zu verwenden, gibt man in eine Formel den Makronamen als Befehl ein, in unserem Fall  $\q G$ . Unser Makro sieht in L $\chi$ X folgendermaßen aus:

Hier ist unser Makro-Beispiel mit den Argumenten x, ln(x) und B:

$$x_{1,2} = -\frac{\ln(x)}{2} \pm \sqrt{\frac{\ln(x)^2}{4} - B}$$

LyX bietet im Menü Werkzeuge ▷ Einstellungen ▷ Bearbeiten ▷ Kontrolle verschiedene Bearbeitungsstile für Makros an. Um den Stil zu finden, der für Sie am angenehmsten ist, wählen Sie einen Stil aus und setzen den Cursor in eine Makro-Formel um den Unterschied zu sehen.

Ein Mathe-Makro wird beim Exportieren des Dokuments intern in einen \new-command-Befehl umgewandelt. Der \newcommand-Befehl wird dabei nicht in den LATEX-Vorspann gesetzt, so dass man daher Makros nur in Formeln verwenden kann, die sich im Dokument unterhalb der Makrodefinitionsbox befinden.

Mathe-Makros können auch direkt aus einem **\newcommand**-Befehl erstellt werden. Schreibt man z. B. den Befehl

# $\\ \\ \\ |2|{\tt xleftarrow}[\#2]\{\#1\}\}$

in LyX als normalen Text, markiert ihn komplett und verwendet dann das Tastenkürzel Strg+M, wird der Befehl in ein Mathe-Makro umgewandelt. Bei dieser Methode muss man jedoch aufpassen, dass der \newcommand-Befehl richtig geschrieben wurde, ansonsten wird ein fehlerhaftes Makro erstellt, dass später LaTeX-Fehler hervorruft.

Mathe-Makros haben im Moment noch das Problem, dass weitere Formeln in einer Makrodefinition fehlerhaft behandelt werden. Dadurch kann das Beispiel \fb aus Kap. 22.1 nicht als Makro erzeugt werden.

Wenn der Cursor in einer Makrodefinitionsbox ist, wird die Makro-Werkzeugleiste in LyX angezeigt:

Die Makro-Werkzeugleiste enthält von links nach rechts die folgenden Knöpfe:

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Letztes Argument entfernen

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Argument hinzufügen

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Das erste nicht-optionale

Argument in einen optionales 
ändern

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Das letzte optionale Argument in einen nicht-optionales ändern

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Optionales Argument entfernen

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Optionales Argument einfügen

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Letztes Argument rechts entfernen

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Argument von rechts hinzufügen

Bearbeiten ▷ Mathe ▷ Makro-Definition ▷ Optionales Argument von rechts hinzufügen

#### 22.3. Mathe-Makros für externe Befehle

Zuweilen braucht man ein Lagen Paket, das einen Mathebefehl definiert, welcher nicht von Haus aus in Lagen unterstützt wird. Die Lösung ist einfach: Binden Sie einfach das Paket in den Vorspann ein und tippen Sie den Befehl im Mathe-Modus. Wie immer bei Dingen, die im Vorspann definiert werden, ist die Darstellung im Lagen Arbeitsbereich nicht ideal.

Ab LyX 2.4 gibt es hierfür folgende Lösung: Definieren Sie einfach ein Mathe-Makro mit leerem TEX-Kästchen! Der LyX-Teil wird für die Drastellung verwendet, es wird aber kein LATEX-Code ausgegeben. Beispielsweise definiert das Paket **godelnum** ein Makro \Godelnum, welches ein eizlenes Argument in eckige Anführungszeichen setzt. Um hierfür eine elegante Darstellung in LyX zu bekommen, definieren Sie einfach:

Der gleiche Trick funktioniert natürlich auch für Befehle, die Sie im Vorspann selbst definiert haben.

# 23. Computeralgebrasysteme

Mit LyX ist es möglich, mathematische Ausdrücke mit externen Anwendungen oder benutzerdefinierten Skripten auszutauschen. Momentan werden folgende Anwendungen unterstützt: Maple, Mathematica, Maxima und Octave. Beachten Sie aber, dass die unterstützten mathematischen Ausdrücke auf sehr einfache Fälle beschränkt sind.

# 23.1. Verwendung

Schreiben Sie einen Ausdruck in eine Formel, öffnen Sie das Menü Bearbeiten ▷ Mathe ▷ Computer-Algebra-System verwenden und wählen Sie die Anwendung, die Sie auf ihrem Computer installiert haben. Danach sollte das Ergebnis der Berechnung auf der rechten Seite zusammen mit dem "=" Operator erscheinen.

Hier sind ein paar einfache Beispiele (mit Resultaten von Maxima) um zu zeigen, welche Berechnungen durchgeführt werden können:

• 
$$\frac{37}{3} * 2 - \sum_{i=1}^{3} i^i = -\frac{22}{3}$$

$$\bullet \quad \frac{37.0}{3} = 12.33333333333333333$$

• 
$$\int \left(\frac{1}{1+x^3}\right) dx = -\frac{\log(x^2-x+1)}{6} + \frac{\arctan\left(\frac{2x-1}{\sqrt{3}}\right)}{\sqrt{3}} + \frac{\log(x+1)}{3}$$
Achtung: Es muss die Einfügung für automatische Klammern () verwendet werden statt einfacher zeichen für Klammern '(' ')'.

• 
$$\det \begin{bmatrix} 1 & 6 & 7 \\ 2 & 5 & 8 \\ 3 & 4 & 17 \end{bmatrix} = -56$$

• 
$$\lim_{x\to 0} \left(\frac{\sin(x)}{x}\right) = 1$$

• 
$$powerseries(-\log(5-x),x,1) = \sum_{i_2=0}^{\infty} \frac{4^{-i_2-1}(x-1)^{i_2+1}}{i_2+1} - \log 4$$

• 
$$solve(x_1 + y_1^3 = y_1 + x_1^2, x_1) = \left[x_1 = -\frac{\sqrt{4y_1^3 - 4y_1 + 1} - 1}{2}, x_1 = \frac{\sqrt{4y_1^3 - 4y_1 + 1} + 1}{2}\right]$$

#### 23.2. Tastenkürzel

Momentan gibt es kein Tastenkürzel um Computeralgebrasysteme aufzurufen. Sie können aber einfach ein Tastenkürzel mit der LyX-Funktion math-extern verknüpfen (siehe das LyX-Funktionen Handbuch). Man kann z.B. die Enter-Taste in Formeln verknüpfen. Um sie mit Maxima zu verknüpfen, würde man diesen Tastenkürzel-Definitionsbefehl verwenden:

command-alternatives paragraph-break; math-extern maxima

# 24. Verschiedenes

# 24.1. Negative Zahlen

Negative Zahlen sehen im Formelmodus oft schlecht aus, denn das Minuszeichen vor der Ziffer wird mit der gleichen Länge wie das Zeichen der Minus-Operation

dargestellt. Schreibt man dagegen eine negative Zahl im normalen Text, erscheint das Minuszeichen korrekt.

Wandelt man also das Minuszeichen in mathematischen Text um, tritt das Problem nicht mehr auf.

Ein Beispiel zur Veranschaulichung der Problematik:

normaler Text: x = -2Formelmodus: x = -2Lösung: x = -2

#### 24.2. Komma als Dezimaltrennzeichen

In LaTeX fungiert das Komma in einer Formel, gemäß englischer Konvention, als Gruppentrennzeichen. Es wird demnach automatisch hinter allen Kommas in Formeln ein Leerraum eingefügt.

Um dies zu verhindern, markiert man das Komma und wandelt es in mathematischen Text um (Tastenkürzel Alt+M M).

Um hingegen alle Formelkommas des Dokuments als Dezimaltrennzeichen zu setzen, lädt man die Datei **icomma.sty**<sup>48</sup> mit der LAT<sub>F</sub>X-Vorspannzeile

\usepackage{icomma}

# 24.3. Physikalische Vektoren

geladen wird.

Folgende Befehle sind definiert:

| Befehl                            | Ergebnis                           |
|-----------------------------------|------------------------------------|
| \psi                              | $\langle \psi  $                   |
| $\$ \Ket{\psi} \Braket{\psi \phi} | $\ket{\psi} \ ra{\psi \ket{\phi}}$ |

<sup>&</sup>lt;sup>48</sup>icomma ist Teil des LAT<sub>F</sub>X-Paketes was.

Der Befehl \Braket stellt sicher, dass alle senkrechten Striche in der Größe der umgebenden Klammern gesetzt werden:

$$\left\langle \phi \left| J = \frac{3}{2}, M_J \right\rangle \right.$$

Der Effekt von **\Braket** kann auch mit dem Befehl **\middle** erzielt werden, der in Kap. 5.1.2 beschrieben ist.

#### 24.4. Selbst definierte Brüche

Um eigene Befehle für Brüche zu definieren, verwendet man den Befehl \genfrac in folgendem Schema:

# $\label{linke Klammer} $$\operatorname{Klammer}_{Bruchstrichdicke}_{Ansichtsstil} $$ {Z\"{a}hler}_{Nenner}$$

Der Ansichtsstil wird mit einer ganzen Zahl im Bereich 0-3 angegeben.

| Nummer | Ansichtsstil        |
|--------|---------------------|
| 0      | abgesetzte Formel   |
| 1      | eingebettete Formel |
| 2      | klein               |
| 3      | winzig              |

Wird nichts für den Ansichtsstil angegeben, passt sich die Größe wie bei  $\$  Umgebung an.

Wird keine Bruchstrichdicke angegeben, wird der voreingestellte Wert von  $0.4\,\mathrm{pt}$  verwendet.

Zum Beispiel sind die Befehle  $\backslash \mathbf{dfrac}$  und  $\backslash \mathbf{tbinom}$  aus Kap. 3.2 folgendermaßen definiert:

Um einen Bruch zu definieren, bei dem man die Bruchstrichdicke als optionales Argument angeben kann, gibt man im LATEX-Vorspann folgenden Befehl ein:

Dazu ein Test:

B

Wie man sieht, entspricht der Abstand des Zählers und Nenners vom Strich in etwa der dreifachen Strichdicke.

# 24.5. Durchgestrichene Formeln

Es gibt vier verschiedene Arten Formeln oder Formelteile durchzustreichen:

| Befehl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ergebnis          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $\c = A = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\int A = B$      |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\int A = B$      |
| $\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JA-B              |
| $\cline{Concelto} \cline{Concelto} \cli$ | $\int A = B^{-1}$ |

\cancelto eignet sich besonders, wenn man das Kürzen innerhalb einer Formel darstellen will:

$$\frac{(x_0 + bB)^2}{(1 + b^2)^2} = \frac{x_0^2 + B^2 - r_g^2}{1 + b^2}$$

Um die Größe des "hochgestellten" Werts von **\cancelto** zu ändern, kann man die LATEX-Vorspannzeile

# $\PassOptionsToPackage{Option}{cancel}$

hinzufügen. **Option** ist entweder **samesize**, das zur selben Größe wie die der durchgestrichenen Zeichen führt, oder **Smaller**, das zu einer etwas kleineren Größe als die Voreinstellung führt.

Um den Durchstrich zu färben, verwendet man den Befehl

 $\label{lem:command} $$\operatorname{Color}_{\color}(\color)$$ 

als T<sub>E</sub>X-Code. red kann durch eine Farbe der Wahl ersetzt werden.

$$\frac{(x_0 + bB)^2}{(1 + b^2)^2} = \frac{x_0^2 + B^2 - r_g^2}{1 + b^2}$$

Für weitere Anpassungen siehe die Dokumentation des Pakets cancel, [5].

### 24.6. Formeln in Überschriften

Benutzt man Formeln in Überschriften, ist auf Folgendes zu achten:

Verwendet man **hyperref** Unterstützung im den Dokumenteinstellungen unter PDF-Eigenschaften, werden PDF-Lesezeichen für jede Überschrift aus dem Inhaltsverzeichnis erzeugt. Enthält eine Überschrift Formeln, werden diese im Lesezeichentext falsch dargestellt. Denn Formeln in Lesezeichen verstoßen gegen die PDF-Konventionen.

Beide Probleme lassen sich lösen, indem man am Ende der Überschrift einen Kurztitel über das Menü Einfügen Kurztitel einfügt. Kurztitel werden als Alternative für mehrzeilige Überschriften verwendet, um das Inhaltsverzeichnis übersichtlich zu halten. Nur der Kurztitel erscheint im Inhaltsverzeichnis und damit auch im PDF-Lesezeichen.

Möchte man im Inhaltsverzeichnis eine Formel verwenden, benutzt aber **hyperref**, verwendet man im TEX-Modus den Befehl

#### \texorpdfstring{Teil}{Alternative}

Teil ist der Überschriftsteil, der nicht im PDF-Lesezeichen erscheinen solle. Das können Zeichen, Formeln, Fußnoten aber auch Querverweise sein. Als Alternative kann man angeben, was stattdessen im Lesezeichen erscheinen soll.

Es folgen zwei Beispielüberschriften:

# 24.6.1. Überschrift ohne Formel im Inhaltsverzeichnis $\sqrt{-1} = i$

# 24.6.2. Überschrift mit Formel im Inhaltsverzeichnis $\sqrt{-1} = i$

In der ersten Überschrift wurde ein Kurztitel verwendet. In der zweiten \texorpdfstring.

Damit die Formeln so wie der Rest der Überschrift formatiert werden, wurde die komplette Überschrift in eine **boldmath**-Umgebung<sup>49</sup> gesetzt.

<sup>&</sup>lt;sup>49</sup>siehe Kap. 11.2

# 24.7. Formeln im mehrspaltigen Text

Formeln im mehrspaltigen Text sind oftmals zu breit für eine Spalte und müssen daher über die gesamte Seitenbreite gesetzt werden. Dazu verwendet man das LATFX-Paket multicol<sup>50</sup>, das mit der L<sup>A</sup>T<sub>F</sub>X-Vorspannzeile

#### \usepackage{multicol}

geladen wird.

Dabei ist zu beachten, dass im Menü Dokument⊳ Einstellungen unter Textformat nicht Zweispaltiges Dokument ausgewählt sein darf.

Vor den mehrspaltigen Text schreibt man im TEX-Modus den Befehl

#### \begin{multicols}{Spaltenanzahl}

wobei die Spaltenanzahl eine Zahl im Bereich 2-10 ist. Vor der Formel beendet man den mehrspaltigen Text mit dem Befehl

#### \end{multicols}

der im T<sub>E</sub>X-Modus eingegeben wird.

Durch den Befehl wird vor der Formel automatisch etwas Leerraum erstellt. Um dies rückgängig zu machen, fügt man vor der Formel -6 mm vertikalen Leerraum ein. Ist der Formelstil **Eingerückt<sup>51</sup>** gewählt, fügt man stattdessen -9 mm Leerraum ein.

Als Beispiel ein mehrspaltiger Text mit einer abgesetzten Formel:

Die Fouriertransformation wird verwendet, um die überlagerten Signale (Netzwerk, Lösungsmittel) zu trennen. Nachdem wir die Phasenverschiebung bestimmen konnten, interessiert uns nun das Aussehen des Ausgangssignals. Im Expe-

Das Spektrum wird fouriertransformiert. riment haben wir es mit sehr vielen Teilchen zu tun, so dass man über alle Phasen integrieren muss. Sei nun S unser normiertes Ausgangssignal und P die Phasenverteilungsfunktion, so ergibt sich die Beziehung

$$S(t) = S_0(t) \int_{-\infty}^{\infty} P(\phi, t) e^{i\phi} d\phi$$
 (31)

Acht lassen. Direkt nach dem  $\pi/2$ -rf-Puls so genannten  $T_2$ -Zeit.

wobei  $S_0$  das Signal ohne Gradient beginnt sich die Magnetisierung zu ent-Normierungsbedingung fokussieren, wodurch sich das Signal zu- $\int_{-\infty}^{\infty} P(\phi,t) d\phi = 1$  gilt. Nun dürfen wir sätzlich abschwächt. Diese Abschwächung aber nicht den Relaxationsprozess außer verläuft exponentiell in Abhängigkeit der

 $<sup>\</sup>overline{\ \ }^{50}$  multicol ist Teil jeder LATEX-Standard<br/>installation.

 $<sup>^{51}</sup>$ Formelstile siehe Kap. 17

# 24.8. Formeln mit Beschreibung der Variablen

Möchte man wie in Formel (32), Variablen innerhalb einer Formel beschreiben, verwendet man eine  $2 \times n$  Matrix mit links ausgerichteten Spalten für die verwendeten n Variablen. Um die Beschreibung kleiner zu setzen, gibt man vor der Matrix z. B. den Befehl \footnotesize ein.  $^{53}$ 

Wird der Formelstil **Eingerückt<sup>54</sup>** verwendet, fügt man vor und nach der Matrix ein **\hfill**<sup>55</sup> ein, damit der Abstand der Matrix von der Gleichung und vom Seitenrand gleich ist.

Ist der Formelstil **Zentriert** gewählt, nutzt man die in Kap. 18.2.3 beschriebene Möglichkeit, Formeln einzurücken. Formel (32) besteht aus fünf Spalten, wobei in den ersten beiden die Gleichung, in der dritten die Matrix und in der letzten die leere TEX-Klammer steht.

$$F_{A} = \rho \cdot V \cdot g$$
  $\rho$  Dichte  
 $V$  Volumen  
 $g$  Fallbeschleunigung (32)

### 24.9. Aufrechte kleine griechische Buchstaben

Die meisten Mathe-Schriften stellen nur kursive kleine griechische Buchstaben zur Verfügung. Für Symbole der Elementarteilchen, wie Pionen und Neutrinos werden jedoch aufrechte griechische Buchstaben benötigt. Die Datei **upgreek.sty**<sup>56</sup>, die mit der LATEX-Vorspannzeile

#### \usepackage{upgreek}

geladen wird, stellt diese Buchstaben zur Verfügung. Sie werden erzeugt, wenn der Befehl für einen griechischen Buchstaben mit  $\bf up$  begonnen wird. So erzeugt z. B. der Befehl  $\bf uptau$  dies:  $\bf \tau$ 

Damit kann man Elementarteilchenreaktionen erstellen:

$$\pi^+ \to \mu^+ + \nu_\mu$$

Die aufrechten Buchstaben sind fetter und breiter als die kursiven. Sie sollten daher nicht für Einheiten wie "µm" verwendet werden.

 $<sup>^{52}</sup>$ Matrizen siehe Kap. 4

 $<sup>^{53}</sup>$ Schriftgrößen siehe Kap. 11.4

<sup>&</sup>lt;sup>54</sup>Formelstile siehe Kap. 17

<sup>&</sup>lt;sup>55</sup>\hfill wirkt nur in Formeln mit dem Stil Eingerückt, siehe Kap. 8.2.

<sup>&</sup>lt;sup>56</sup>upgreek ist Teil des LAT<sub>E</sub>X-Paketes was.

#### 24.10. Textzeichen in Formeln

In einigen Fällen möchte man Textzeichen direkt in Formeln eingeben. Benötigt man z. B. den mittigen Punkt  $\cdot$  in Formeln wie  $\nu = 5 \cdot 10^5 \, \text{Hz}$ , müsste man dafür jedes Mal den Befehl \cdot eingeben<sup>57</sup>, da dieses Zeichen in allen Kodierungen als Textzeichen definiert ist. Man kann jedoch die Kodierung mit folgender LaTeX-Vorspannzeile ändern:

#### \DeclareInputText{183}{\ifmmode\cdot\else\textperiodcentered\fi}

Die Zeichenkodierung (Menü Dokument⊳Einstellungen⊳Sprache) legt fest, welches Zeichen beim Druck einer bestimmten Taste erscheint. Wenn man die Taste für das Zeichen '·' drückt, wird intern der Befehl \textperiodcentered verwendet. Dieser Befehl ist in einer Formel jedoch nicht verfügbar, so dass es zu LaTeX-Fehlern kommen würde. Durch die geänderte Kodierung wird hingegen automatisch der richtige Befehl gewählt, je nachdem ob das Zeichen in eine Formel eingegeben wurde oder nicht.

Die Kodierung der einzelnen Zeichen ist in Definitionsdateien abgespeichert. Z. B. ist die Kodierung latin9 in der Datei latin9.def definiert, die sich im Installationsverzeichnis von Laten Kodierungen sollten nur über den Laten Vorspann und nicht in den Definitionsdateien geändert werden. Ansonsten können eigene Dokumente von anderen LyX-Nutzern auf anderen Computern nicht ohne Weiteres bearbeitet werden.

In diesem Dokument wurde außerdem mittigen Punkt noch das Gradzeichen ° mit folgenden LaTEX-Vorspannzeilen so definiert, dass sie direkt in eine Formel eingegeben werden können:

 $\DeclareInputText{176}{\immode^\circ\else\textdegree\fi}$ 

# 24.11. LeteX-Kommentare in Formeln

Im Text können Kommentare, die nur in der I⁴TEX-Ausgabe sichtbar sind, mit dem Menü Einfügen⊳Notiz⊳Kommentar eingefügt werden. Dies ist in einer Formel nicht möglich, aber man kann mit dem Befehl

\%

E⁴TEX-Kommentare einfügen. Der Befehl erzeugt eine Box, in die man den Kommentar schreiben kann. Aufgrund eines Fehlers in L<sub>Y</sub>X<sup>58</sup> kann man keinen normalen Text verwenden. Selbst wenn man mathematischen Text verwendet, sieht man dessen E⁴TEX-Befehle in der E⁴TEX-Ausgabe.

Dies ist eine Formel mit einem LATEX-Kommentar:

$$A = B$$

<sup>&</sup>lt;sup>57</sup>siehe Kap. 10.4

 $<sup>^{58}</sup>$ LyX-bug #9002

# A. Typographische Hinweise

Dieses Kapitel ist eine Zusammenfassung der wichtigsten typographischen Regeln, die teilweise auch im Duden [8] unter Textverarbeitung aufgelistet sind. Weitere Regeln sind in [9] zu finden.

- Physikalische Einheiten werden immer aufrecht gesetzt<sup>59</sup>, egal ob sie sich in einem kursiven Text befinden: 30 km/h
  Zwischen Wert und Einheit befindet sich der kleinste Leerraum, siehe Kap. 8.1.
  Diese Richtlinie wird automatisch eingehalten, wenn man den Befehl \unittwo
  verwendet. Gibt man ihn in eine Formel ein, erscheinen zwei Kästchen. In das
  Erste wird der Wert, in das Zweite die Einheit eingegeben und man erhält
  wie oben: 30 km/h. Zu beachten ist, dass \unittwo kein echter LaTeX-Befehl,
  sondern der Befehl \unit[Wert]{Einheit} ist, daher kann man ihn nicht im
  TeX-Code benutzen.
- Prozent- und Promillezeichen werden wie physikalische Einheiten gesetzt: 1,2 ‰ Alkohol im Blut Sie folgen jedoch direkt auf die Zahl, wenn sie in einer Zusammensetzung oder Ableitung stehen: 3%-ige Rendite, 20%-Grenze
- Das Grad-Symbol folgt immer unmittelbar auf die Zahl: 15°, es sei denn es wird in einer Einheit verwendet: 15°C
- In Zahlen mit mehr als vier Ziffern wird zur Gruppierung vor jeder dritten Ziffer der kleinste Leerraum eingefügt: 18 473 588
- Für Bemaßungen wie z.B. 120×90×40 cm, verwendet man das gelegte Kreuz "ד, dass entweder über den Befehl \times oder über das Menü Einfügen⊳ Sonderzeichen⊳Symbole verfügbar ist.
- Bei Datumsangaben befindet sich zwischen Tag und Monat der kleinste Leerraum, zwischen Monat und Jahr ein geschütztes Leerzeichen: 23.6. 1979
- Funktionen, deren Name aus mehreren Buchstaben besteht, werden aufrecht gesetzt um Verwechslungen mit Variablen zu vermeiden, siehe Kap. 15.1.
- Indizes, die aus mehreren Buchstaben bestehen, werden aufrecht gesetzt:  $E_{kin}$ Komponenten von Matrizen werden kursiv gesetzt:  $\hat{H}_{kl}$
- Der Ableitungs-/Integrationsoperator 'd', die Eulersche Zahl 'e' und die Imaginäre Zahl 'i' sollten aufrecht gesetzt werden, um sie nicht mit anderen Variablen zu verwechseln.
- Das Symbol für eine FOURIER-Transformation kann entweder mit dem Befehl \mathscr
  F oder über das Menü Einfügen > Sonderzeichen > Symbole > Buchstabenähnliche Symbole eingefügt werden: F

<sup>&</sup>lt;sup>59</sup>wird durch Schriftstile erreicht, siehe Kap. 11.1

# B. Synonyme

Einige Zeichen und Symbole können mit mehreren Befehlen erstellt werden. Hier ist eine Übersicht der Synonymbefehle:

| Befehl                                       | äquivalent zu | Befehl                                   | äquivalent zu     |
|----------------------------------------------|---------------|------------------------------------------|-------------------|
| \ast                                         | *             | \backslash                               | \\                |
| \choose                                      | \binom        | $\dasharrow$                             | $\dashrightarrow$ |
| \geq                                         | \ge           | \land                                    | \wedge            |
| \lbrace                                      | {             | \rbrace                                  | }                 |
| \lbracket                                    | [             | \rbracket                                | ]                 |
| $\left\langle \text{leftarrow}\right\rangle$ | \gets         | $\rightarrow$                            | $\backslash to$   |
| \leq                                         | \le           | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | \neg              |
| \lor                                         | \vee          | \ne                                      | not =             |
| \neq                                         | not =         | \owns                                    | \ni               |
| \slash                                       | /             | \square                                  | \Box              |
| \vert                                        |               | Vert                                     | \                 |

# Literatur

- [1] F. MITTELBACH; M. GOOSSENS: The LaTeX Companion. Addison Wesley, 2004
- [2] Beschreibung der mathematischen Fähigkeiten von LATEX
- [4] Auflistung aller über LATEX-Pakete verfügbare Symbole
- [5] Dokumentation des LATEX-Pakets cancel
- [6] Dokumentation des LATEX-Pakets hyperref
- [7] Dokumentation des LATEX-Pakets mhchem
- [8] Duden Band 1. 22. Auflage, Dudenverlag, 2000
- [9] Prüfliste für das Rezensieren von Manuskripten

# Stichwort- und Befehlsverzeichnis

| <b>€</b> , 40                                                       | \definecolor, 26<br>\dfrac, 4                         |
|---------------------------------------------------------------------|-------------------------------------------------------|
| Akzente, 18 für ein Zeichen, 19 für mehrere Zeichen, 20 im Text, 44 | \displaystyle, 1, 36<br>\dotfill, 10<br>\dots, 9<br>E |
| Befehle<br>@                                                        | \euro, 40<br>F                                        |
| \@addtoreset, 58<br>\@removefromreset, 58<br>A                      | \fbox, 23<br>\fcolorbox, 26<br>\frac, 4               |
| \Alph, 56<br>\adjustlimits, 31<br>\aligned, 53                      | \framebox, 23 G \gathered, 53                         |
| \alignedat, 53<br>\alph, 56<br>\arabic, 57, 59                      | \genfrac, 69 H \hdotsfor, 10 \hfill, 22               |
| \arraycolsep, 12, 47<br>\arraystretch, 12<br>B                      | \hphantom, 8<br>\hrulefill, 10<br>\hspace, 21, 48     |
| \big, 13<br>\bigl - \bigr, 13<br>\bigm, 13                          | I \\int, 29 \\intertext, 53                           |
| \binom, 6<br>\boldmath, 35<br>\boldsymbol, 39                       | J<br>\jot, 16, 47<br>L                                |
| \boxed, 23<br>\brace, 6<br>\brack, 6                                | \ldots, 9<br>\left, 11, 14, 49<br>\lefteqn, 48        |
| C \cases, 7 \CD, 61                                                 | \leftroot, 6<br>\lim, 43<br>\linewidth, 27            |
| \cdots, 9 \ce, 59 \cf, 60 \cfrac, 5 \colorbox, 25                   | M \makebox, 24 \mathbin, 34 \mathop, 34               |
| D \DeclareMathOperator, 33, 42                                      | \mathsurround, 22<br>\mbox, 24<br>\middle, 14         |
| \dbinom, 6                                                          | \multlinegap, 52                                      |

| N                     | \textbackslash, 12                |  |
|-----------------------|-----------------------------------|--|
| \newcommand, 62       | \textcircled, 45                  |  |
| \nicefrac, 5          | \textcolor, 26, 36                |  |
| $\setminus$ not, 7    | \tfrac, 4                         |  |
| \numberwithin, 58     | $\mathbf{U}$                      |  |
| O                     | \unboldmath, 35                   |  |
| \officialeuro, 40     | \underbrace, 15                   |  |
| \oldstylenums, 45     | \underbracket, 15                 |  |
| \overbrace, 15        | \underline, 8                     |  |
| \overbracket, 15      | $\sqrt{\text{underset}}$ , 20, 32 |  |
| \overline, 8          | \unitfrac, 5                      |  |
| \overset, 20, 32      | \uproot, 6                        |  |
| P                     | V                                 |  |
| \parbox, 27           | \vphantom, 8, 49                  |  |
| \phantom, 8           | X                                 |  |
| \prod, 29             | \xleftarrow, 17                   |  |
| R                     | \xrightarrow, 17                  |  |
| \Roman, 56            | Begrenzungszeichen, 12            |  |
| \raisebox, 24         | benutzerdefinierte Befehle, 62    |  |
| \renewcommand, 12, 56 | Mathe-Makros, 63                  |  |
| \right, 11, 14, 49    | \newcommand, 62                   |  |
| \roman, 56            | Binomialkoeffizienten, 6          |  |
| \root, 6              | Boxen, 23                         |  |
| \rule, 9              | Absatz-, 27                       |  |
| $\mathbf{S}$          | farbige, 25                       |  |
| \setlength, 22        | mit Rahmen, 23                    |  |
| \shortintertext, 54   | ohne Rahmen, 24                   |  |
| \shoveleft, 52        | Brüche, 4                         |  |
| \shoveright, 52       | mehrzeilige, 49                   |  |
| \sideset, 32          | selbstdefinierte, 69              |  |
| \smallmatrix, 12      | sonstatimerte, or                 |  |
| \smashoperator, 31    | chemische Zeichen                 |  |
| \split, 53            | Isotope, 7                        |  |
| \splitfrac, 49        | Symbole, 59                       |  |
| \sqrt, 6              |                                   |  |
| \stackrel, 41         | Diagramme                         |  |
| \subarray, 30         | amscd, 61                         |  |
| \substack, 30         | Feynman, 62                       |  |
| \sum, 29              | xymatrix, 62                      |  |
| T                     | Exponent on A                     |  |
| \tag, 57              | Exponenten, 4                     |  |
| \tbinom, 6            | Fallunterscheidungen, 7           |  |
| \texorpdfstring, 71   | Formel                            |  |
| \text, 2              | abgesetzte, 1                     |  |
| 1                     |                                   |  |

| durchgestrichene, 70           | Integrale, 28                    |
|--------------------------------|----------------------------------|
| eingebettete, 1                | Isotope, siehe chemische Zeichen |
| farbige, 35                    |                                  |
| fett gedruckte, 35             | Klammergrößen                    |
| im mehrspaltigen Text, 72      | automatische, 14                 |
| in Überschriften, 71           | manuelle, 13                     |
| lange, 48                      | Klammern, 12                     |
| mehrzeilige, 46                | horizontale, 15                  |
| align-Umgebung, 50             | mehrzeilige, 49                  |
| alignat-Umgebung, 51           | vertikale, 12                    |
| Equarray-Umgebung, 51          | Komma, 68                        |
| flalign-Umgebung, 51           |                                  |
| Formelteile, 53                | ĿETEX-Vorspann, 2                |
| Gather-Umgebung, 52            | LaTeX-Kommentare, 74             |
| Multline-Umgebung, 52          | Leerraum                         |
| Spaltenabstand, 47             | horizontaler, 20                 |
| Text, 53                       | variabel, 21                     |
| Zeilenabstand, 46              | vordefiniert, 20                 |
| mit Variablenbeschreibung, 73  | neben eingebetteten Formeln, 22  |
| Nummerierung, siehe Formelnum- | Linien, 8                        |
| merierung                      |                                  |
| Stile, 45                      | Makros, 63                       |
| unterstrichene, 8              | Werkzeugleiste, 65               |
| Formelnummerierung, 54         | Mathematischer Textmodus, 2      |
|                                | Matrizen, 10                     |
| benutzerdefinierte, 57         | Minuskelziffern, 45              |
| eigene Klammern, 57            | 0                                |
| mit Buchstaben, 56             | Operatoren, 28                   |
| mit römischen Zahlen, 56       | binäre, 32                       |
| Unternummerierung, 55          | Dekoration, 32                   |
| Fortsetzungspunkte, 9          | Grenzen, 30                      |
| Funktionen                     | große, 28                        |
| Modulo-, 43                    | selbstdefinierte, 33             |
| selbstdefinierte, 42           | D 1 /                            |
| vordefinierte, 41              | Pakete                           |
| Grenzwerte, 43                 | braket, 68                       |
| griechische Buchstaben, 37     | calc, 27, 47                     |
| aufrechte, 73                  | cancel, 71, 77                   |
| fett gedruckte, 39             | carlisle, 58                     |
| große, 38                      | color, 25                        |
| 9                              | eurosym, 40                      |
| kleine, 38                     | fixmath, 38                      |
| Hochstellen, siehe Exponenten  | hyperref, 71, 77                 |
|                                | icomma, 68                       |
| Indizes, 4                     | mathtools, 15, 17, 31, 49, 54    |
|                                |                                  |

Verneinungen, 7 mhchem, 59, 77 Verschiedenes, 67 multicol, 72 remreset, 58 Wurzeln, 6 undertilde, 19 upgreek, 73 Zahlen was, 38, 68, 73 negative, 67 Pfeile, 16 beschriftbare, 17 diagonale, 18 horizontale, 17 vertikale, 18 Platzhalter, 7 Querverweise auf Formeln, 54 Rahmen, siehe Boxen Reaktionsgleichungen, 59 Relationen, 40 Schriften, 34 Schriftgrößen, 36 Schriftstile, 34 Sonderzeichen, 44 Summen, 28 Symbole, 39 chemische, 59 Euro-Symbol, 40 mathematische, 39 sonstige, 40 Synonyme, 76 T<sub>F</sub>X-Klammern, 2 T<sub>E</sub>X-Modus, 2 Text farbiger, 26 in Formeln, 2, 53, 74 Tiefstellen, siehe Indizes Tilde, 44 Typographische Hinweise, 75 Umlaute, 19 Vektoren, 19 physikalische, 68 Vergleiche, siehe Relationen